Advanced Geotechnical Engineering : Soil-Structure Interaction using Computer and Material Models book cover
1st Edition

Advanced Geotechnical Engineering
Soil-Structure Interaction using Computer and Material Models

ISBN 9781466515604
Published November 27, 2013 by CRC Press
638 Pages 495 B/W Illustrations

SAVE $36.00
was $180.00
USD $144.00

Prices & shipping based on shipping country


Book Description

Soil-structure interaction is an area of major importance in geotechnical engineering and geomechanics Advanced Geotechnical Engineering: Soil-Structure Interaction using Computer and Material Models covers computer and analytical methods for a number of geotechnical problems. It introduces the main factors important to the application of computer methods and constitutive models with emphasis on the behavior of soils, rocks, interfaces, and joints, vital for reliable and accurate solutions.

This book presents finite element (FE), finite difference (FD), and analytical methods and their applications by using computers, in conjunction with the use of appropriate constitutive models; they can provide realistic solutions for soil–structure problems. A part of this book is devoted to solving practical problems using hand calculations in addition to the use of computer methods. The book also introduces commercial computer codes as well as computer codes developed by the authors.

  • Uses simplified constitutive models such as linear and nonlinear elastic for resistance-displacement response in 1-D problems
  • Uses advanced constitutive models such as elasticplastic, continued yield plasticity and DSC for microstructural changes leading to microcracking, failure and liquefaction
  • Delves into the FE and FD methods for problems that are idealized as two-dimensional (2-D) and three-dimensional (3-D)
  • Covers the application for 3-D FE methods and an approximate procedure called multicomponent methods
  • Includes the application to a number of problems such as dams , slopes, piles, retaining (reinforced earth) structures, tunnels, pavements, seepage, consolidation, involving field measurements, shake table, and centrifuge tests
  • Discusses the effect of interface response on the behavior of geotechnical systems and liquefaction (considered as a microstructural instability)

This text is useful to practitioners, students, teachers, and researchers who have backgrounds in geotechnical, structural engineering, and basic mechanics courses.

Table of Contents

Importance of Interaction
Importance of Material Behavior
Ranges of Applicability of Models
Computer Methods
Fluid Flow
Scope and Contents

Beam-Columns, Piles, and Walls: One-Dimensional Simulation
Beams with Spring Soil Model
Laterally Loaded (One-Dimensional) Pile
Numerical Solutions
Finite Element Method: One-Dimensional Simulation
Soil Behavior: Resistance–Displacement ( py –v or p–y) Representation
One-Dimensional Simulation of Retaining Structures
Axially Loaded Piles
Torsional Load on Piles

Two- and Three-Dimensional Finite Element Static Formulations and Two-Dimensional Applications
Finite Element Formulations
Nonlinear Behavior
Sequential Construction

Three-Dimensional Applications
Multicomponent Procedure

Flow through Porous Media: Seepage
Governing Differential Equation
Numerical Methods
Finite Element Method
Invariant Mesh or Fixed Domain Methods
Applications: Invariant Mesh Using RFP
Appendix A

Flow through Porous Deformable Media: One-Dimensional Consolidation
One-Dimensional Consolidation
Nonlinear Stress–Strain Behavior
Numerical Methods

Coupled Flow through Porous Media: Dynamics and Consolidation
Governing Differential Equations
Dynamic Equations of Equilibrium
Finite Element Formulation
Special Cases: Consolidation and Dynamics-Dry Problem
Appendix 1: Constitutive Models, Parameters and Determination s
Appendix 2: Computer Software and Codes

View More



Chandrakant S. Desai is a regents’ professor (emeritus), Department of Civil Engineering and Engineering Mechanics, University of Arizona, Tucson Dr. Desai is recognized internationally for his significant and outstanding contributions in research, teaching, applications, and professional work in a wide range of topics in engineering. Dr. Desai has authored/coauthored/edited 22 books in the areas of finite element method and constitutive modeling, and 19 book chapters, and has authored/coauthored about 320 technical papers in refereed journals and conferences. He has served on the editorial boards of 14 journals, and has been the chair/member of a number of committees of various national and international societies and conferences. He has been the founding President of the International Association of Computer Methods and Advances in Geomechanics, and founding Editor-in-Chief of the International Journal of Geomechanics (IJOG) published by the American Society of Civil Engineers.

Musharraf Zaman holds the David Ross Boyd Professorship and Aaron Alexander Professorship in Civil Engineering at the University of Oklahoma (OU), Norman. He is also an alumni chair professor in Petroleum Engineering. He has been serving as the associate dean for research in the OU College of Engineering since July 2005. Zaman received his baccalaureate degree from the Bangladesh University of Engineering and Technology, and his PhD degree from the University of Arizona, Tucson. He has published 158 journal and 215 peer reviewed conference proceedings papers, and eight book chapters. He also serves as the editor-in-chief of the International Journal of Geomechanics, ASCE.


"The application of numerical tools continues to increase within the practicing geotechnical engineering community. An increase in urban development/re-development and difficult soil conditions are demanding increased attention in design to manage the risks associated with construction staging and sequencing and the potential impacts to cost and schedule. Numerical tools represent an ideal approach to managing and addressing these challenging demands and aid decision makers in selecting among alternatives. The authors have provided a detailed and comprehension text for practitioners and researchers alike. Successfully covering topics from material models and mathematical analysis relevant to engineering applications provide the reader insight to the proper use of these tool s from understanding of the theory through their practical use in the field."
—Conrad W. Felice, C. W. Felice LLC