Advancements in Developing Abiotic Stress-Resilient Plants : Basic Mechanisms to Trait Improvements book cover
1st Edition

Advancements in Developing Abiotic Stress-Resilient Plants
Basic Mechanisms to Trait Improvements

  • Available for pre-order. Item will ship after April 26, 2022
ISBN 9780367748043
April 26, 2022 Forthcoming by CRC Press
392 Pages 38 B/W Illustrations

SAVE $22.49
was $74.95
USD $52.46

Prices & shipping based on shipping country


Book Description

Plants often encounter abiotic stresses including drought, salinity, flooding, high/low temperatures, and metal toxicity, among others. The majority of these stresses occur simultaneously and thus limit crop production. Therefore, the need of the hour is to improve the abiotic stresses tolerance of crop plants by integrating physiology, omics, and modern breeding approaches. This book covers various aspects including (1) abiotic stress responses in plants and progress made so far in the allied areas for trait improvements, (2) integrates knowledge gained from basic physiology to advanced omics tools to assist new breeding technologies, and (3) discusses key genes, proteins, and metabolites or pathways for developing new crop varieties with improved tolerance traits.

Table of Contents

1.  Physiological, molecular and biochemical responses of rice to drought stress

2.  Co-ordinated functions of ROS metabolism and defense systems in abiotic stress tolerance

3.  Nitric oxide mediated salinity stress tolerance in plants: signaling and physiological perspectives

4.  S-nitrosylation & denitrosylation: a regulatory mechanism during abiotic stress tolerance in crops

5.  Calcium Signaling is a Hub of Signaling network in Response and Adaptation of Plants to Heat Stress

6.  Functions of Polyamines in Abiotic Stress Tolerance in Plants

7.  Decoding the Multifaceted Role of Glycine Betaine in Heavy Metal Stress Regulation

8.  Abiotic stress and its role in altering the nutritional landscape of food crops

9.  Plants transcription factors from halophytes and their role in salinity and drought stress tolerance

10.  Plant abiotic stress tolerance on the transcriptomics atlas 

11.  Deciphering the molecular mechanism of salinity tolerance in halophytes using transcriptome analysis

12.  Seed aging in crops: A proteomics perspective

13.  Crop Proteomics: Towards Systemic Analysis of Abiotic Stress Responses

14.  Metabolites and abiotic stress tolerance in plants

15.  Genome editing for developing abiotic stress-resilient plants

16.  Molecular breeding in rice for abiotic stress resilience: The story since 2004

17.  Nanotechnology in developing abiotic stress resilience in crops: a physiological implication

View More



Dr. M. Iqbal R. Khan is an Assistant Professor of Botany at Jamia Hamdard, New Delhi, India. His current research interests are elucidation physiological and molecular mechanisms associated with abiotic stress tolerance. Working on the metabolism of plants under different abiotic stresses, Dr. Khan has found a significant role of phytohormones in the regulation of plant growth and development, have suggested that phytohormones play an important in controlling stress responses, and interacts in coordination with each other for defense signal networking to fine tune tolerance mechanisms. He is also exploring the regulatory role of signaling molecules and their impact on nutrient homeostasis and source-sink relationship under abiotic stresses. Dr. Khan has published more than 45 journal articles, eight book chapters and has edited four books. He has been recognized as Young Scientist of the Year from Indian Society of Plant Physiology and Scientific and Environmental Research Institute, India and Junior Scientist of the Year from National Environmental Science Academy New Delhi, India.

Dr. Palakolanu Sudhakar Reddy is a Scientist (Cell, Molecular biology and Genetic engineering) at International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Telengala, India. He has a PhD from International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, where he focused on “Identification and characterization of the Heat Shock Proteins from Pennisetum glaucum”. He was a primary team member for developing high-throughput, low-cost methodologies for the isolation of promoters and genes, sequencing for phage DNA and identification of stable reference genes for qRT-PCR studies. He has been awarded with several National and International awards, including Leibniz-DAAD Postdoctoral Fellowship, Young Scientist and INSPIRE Faculty Awards from the Department of Science and Technology (DST), Government of India. He is an associate fellow of Andhra Pradesh Akademi of Sciences from 2015. He worked in Germany and Philippines on functional genomics and molecular aspects of abiotic stress tolerance and genome editing. He has published more than 39 research articles in international peer reviewed journals, edited one book, written eight book chapters, and has a patent. He is a reviewer of several reputed international journals, including Frontiers in plant science, Plant Physiology and Biochemistry, BMC Genomics, Environmental and Experimental Botany, Gene and PLoS ONE.

Dr. Ravi Gupta obtained his Ph.D. in Plant Physiology and Biochemistry from the University of Delhi, India. After gaining his Ph.D., he spent more than five years in South Korea working as a postdoctoral fellow and Research Professor at Pusan National University, Busan, Korea. Dr. Gupta is the author of more than 60 scientific journal publications and several book publications. He is a recipient of several prestigious national and international awards such as Ramalingaswami re-entry fellowship, Ramanujan fellowship, and ITS fellowship from Government of India and Korea Research Fellowship from Government of South Korea. Dr. Gupta has been invited to give many lectures at national and international conferences and workshops and has received independent funding from the Governments of India and South Korea. His current objectives include unravelling the biotic and abiotic stress signaling in plants, especially rice and soybean, using gel-based and gel-free proteomics approaches. Moreover, He is also working towards the development of novel techniques for the depletion of high-abundance proteins from different plant tissues to increase their proteome coverage, which would help analyse the "Hidden Proteome" of the plants.