Applied Calculus of Variations for Engineers  book cover
2nd Edition

Applied Calculus of Variations for Engineers

ISBN 9780367378646
Published June 30, 2020 by CRC Press
236 Pages

FREE Standard Shipping
USD $69.95

Prices & shipping based on shipping country


Book Description

The purpose of the calculus of variations is to find optimal solutions to engineering problems whose optimum may be a certain quantity, shape, or function. Applied Calculus of Variations for Engineers addresses this important mathematical area applicable to many engineering disciplines. Its unique, application-oriented approach sets it apart from the theoretical treatises of most texts, as it is aimed at enhancing the engineer’s understanding of the topic.

This Second Edition text:

  • Contains new chapters discussing analytic solutions of variational problems and Lagrange-Hamilton equations of motion in depth

  • Provides new sections detailing the boundary integral and finite element methods and their calculation techniques

  • Includes enlightening new examples, such as the compression of a beam, the optimal cross section of beam under bending force, the solution of Laplace’s equation, and Poisson’s equation with various methods

Applied Calculus of Variations for Engineers, Second Edition extends the collection of techniques aiding the engineer in the application of the concepts of the calculus of variations.

Table of Contents

The Foundations of Calculus of Variations. Constrained Variational Problems. Multivariate Functionals. Higher Order Derivatives. The Inverse Problem of Calculus of Variations. Analytic Solutions of Variational Problems. Numerical Methods of Calculus of Variations. Differential Geometry. Computational Geometry. Variational Equations of Motion. Analytic Mechanics. Computational Mechanics.

View More



Dr. Louis Komzsik is a graduate of the Technical University of Budapest, Hungary and the Eötvös Loránd University, Budapest, Hungary. He has been working in the industry for more than 40 years, and is currently the chief numerical analyst in the Office of Architecture and Technology at Siemens PLM Software, Cypress, California, USA. Dr. Komzsik is the author of the NASTRAN Numerical Methods Handbook, first published by MSC in 1987. His book, The Lanczos Method, published by SIAM, has also been translated into Japanese, Korean, and Hungarian. His book, Computational Techniques of Finite Element Analysis, published by CRC Press, is in its second print, and his Approximation Techniques for Engineers was published by Taylor and Francis in 2006. He is also the coauthor of the book Computational Techniques of Rotor Dynamics with the Finite Element Method, published by Taylor and Francis in 2012.