Applied Genetic Programming and Machine Learning: 1st Edition (Hardback) book cover

Applied Genetic Programming and Machine Learning

1st Edition

By Hitoshi Iba, Yoshihiko Hasegawa, Topon Kumar Paul

CRC Press

349 pages | 137 B/W Illus.

Purchasing Options:$ = USD
Hardback: 9781439803691
pub: 2009-08-26
SAVE ~$16.50
$110.00
$93.50
x
eBook (VitalSource) : 9780429166044
pub: 2009-08-26
from $28.98


FREE Standard Shipping!

Description

What do financial data prediction, day-trading rule development, and bio-marker selection have in common? They are just a few of the tasks that could potentially be resolved with genetic programming and machine learning techniques. Written by leaders in this field, Applied Genetic Programming and Machine Learning delineates the extension of Genetic Programming (GP) for practical applications.

Reflecting rapidly developing concepts and emerging paradigms, this book outlines how to use machine learning techniques, make learning operators that efficiently sample a search space, navigate the search process through the design of objective fitness functions, and examine the search performance of the evolutionary system. It provides a methodology for integrating GP and machine learning techniques, establishing a robust evolutionary framework for addressing tasks from areas such as chaotic time-series prediction, system identification, financial forecasting, classification, and data mining.

The book provides a starting point for the research of extended GP frameworks with the integration of several machine learning schemes. Drawing on empirical studies taken from fields such as system identification, finanical engineering, and bio-informatics, it demonstrates how the proposed methodology can be useful in practical inductive problem solving.

Reviews

… an enjoyable read and offers new insights into a computational paradigm that helps to bridge the gap between applications of GP and ML, as well as substantial source code and GUI systems supporting this topic. … The best feature of this book is its simple presentation style, which includes both mathematics and visual graphics for the uninitiated. For these reasons, it is likely that the book will become an essential source of reference for students, practitioners and young researchers alike.

Minds & Machines, 2012

provides readers with tools and insights to apply genetic programming (GP) to classical machine learning problems. … The most important aspect of this book is the accompanying code/software. Examples in the book are derived from these tools. This enables the reader to actively learn the material by practicing on the examples. … A graduate student interested in machine learning would find this book very useful. The accompanying software can be downloaded and the student can practice and understand a variety of machine learning problems. …It also serves well machine learning researchers who are interested in how genetic programming can be used for their problems. Hopefully, this will lead to application of GP to new machine learning problems such as reinforcement learning and active learning. … a good practitioners guide for system designers employing machine learning to solve industrial problems.

— K. Veeramachaneni, Massachusetts Institute of Technology, in Genetic Programming and Evolvable Machines (2011), 12:179-180

Table of Contents

Introduction

Genetic Programming

Introduction to Genetic Programming

LGPC System

Numerical Approach to Genetic Programming

Introduction

Background

Numerical Problems with STROGANOFF

Classification Problems Solved by STROGANOFF

Temporal Problems Solved by STROGANOFF

Financial Applications by STROGANOFF

Inductive Genetic Programming

Discussion

Summary

Classification by Ensemble of Genetic Programming Rules

Background

Various Classifiers

Various Feature Selection Methods

Classification by Genetic Programming

Various Ensemble Techniques

Applying MVGPC to Real-world Problems

Extension of MVGPC: Various Performance Improvement Techniques

Summary

Probabilistic Program Evolution

Background

General EDA

Prototype Tree-based Methods

PCFG-based Methods

Other Related Methods

Summary

Appendix: GUI Systems and Source Codes

References

Index

Subject Categories

BISAC Subject Codes/Headings:
COM000000
COMPUTERS / General
COM021030
COMPUTERS / Database Management / Data Mining
TEC008000
TECHNOLOGY & ENGINEERING / Electronics / General