3rd Edition

Bioengineering and Biophysical Aspects of Electromagnetic Fields



  • This version cannot be shipped to your selected country.
ISBN 9780849395390
Published October 20, 2006 by CRC Press
440 Pages - 171 B/W Illustrations

USD $170.00

Prices & shipping based on shipping country


Preview

Book Description

Bioengineering and Biophysical Aspects of Electromagnetic Fields primarily contains discussions on the physics, engineering, and chemical aspects of electromagnetic (EM) fields at both the molecular level and larger scales, and investigates their interactions with biological systems.

The first volume of the bestselling and newly updated Handbook of Biological Effects of Electromagnetic Fields, Third Edition, this book adds material describing recent theoretical developments, as well as new data on material properties and interactions with weak and strong static magnetic fields. Newly separated and expanded chapters describe the external and internal electromagnetic environments of organisms and recent developments in the use of RF fields for imaging.

Bioengineering and Biophysical Aspects of Electromagnetic Fields provides an accessible overview of the current understanding on the scientific underpinnings of these interactions, as well as a partial introduction to experiments on the interactions themselves.

Table of Contents

BIOENGINEERING AND BIOPHYSICAL ASPECTS OF ELECTROMAGNETIC FIELDS
Environmental and Occupationally Encountered Electromagnetic Fields; K.H. Mild and B. Greenebaum

Endogenous Electric Fields in Animals; R. Nuccitelli

Dielectric and Magnetic Properties of Biological Materials; C. Gabriel

Magnetic Properties of Biological Material; J. Dobson


Interaction of Direct Current and Extremely Low Frequency Electric Fields with Biological Materials and Systems; F. Barnes

Magnetic Field Effects on Free Radical Reactions in Biology; S. Engström

Signals, Noise, and Thresholds; J.C. Weaver and M. Bier

Biological Effects of Static Magnetic Field; S. Ueno and T. Shigemitsu

The Ion Cyclotron Resonance Hypothesis; A.R. Liboff

Computational Methods for Predicting Field Intensity and Temperature Change; J.C. Lin and P. Bernardi

Experimental EMF Exposure Assessment; S. Kühn and N. Kuster

Electromagnetic Imaging of Biological Systems; W.T. Joines, Q.H. Liu, and G. Ybarra

...
View More