Composite Materials Technology: Neural Network Applications, 1st Edition (Hardback) book cover

Composite Materials Technology

Neural Network Applications, 1st Edition

Edited by S.M. Sapuan, Iqbal Mohammed Mujtaba

CRC Press

368 pages | 150 B/W Illus.

Purchasing Options:$ = USD
Hardback: 9781420093322
pub: 2009-12-23
SAVE ~$27.75
Currently out of stock
eBook (VitalSource) : 9780429147227
pub: 2009-12-23
from $28.98

FREE Standard Shipping!


Artificial neural networks (ANN) can provide new insight into the study of composite materials and can normally be combined with other artificial intelligence tools such as expert system, genetic algorithm, and fuzzy logic. Because research on this field is very new, there is only a limited amount of published literature on the subject.

Compiling information from diverse sources, Composite Materials Technology: Neural Network Applications fills the void in knowledge of these important networks, covering composite mechanics, materials characterization, product design, and other important aspects of polymer matrix composites.

Light weight, corrosion resistance, good stiffness and strength properties, and part consolidation are just some of the reasons that composites are useful in areas including civil engineering and structure, chemical processing, management, agriculture, space study, and manufacturing. ANN has already been used to carry out design prediction, mechanical property prediction, and selection processes in the evolution of composites, but although it has already been used with great success in various branches of scientific and technological research, it is still in the nascent stage of its development.

Featuring contributions from leading researchers throughout the world, this book is divided into four parts, starting with an introduction to neural networks and a review of existing literature on the subject. The text then covers structural health monitoring and damage detection in composites, addresses mechanical properties, and discusses design, analysis, and materials selection. Training, testing, and validation of experimental data were carried out to optimize the results presented in the book.

This book will be an important aid to researchers as they work on the future implementation of ANN in industries such as aerospace, automotive, marine, sporting goods, furniture, and electronics and communication.

Table of Contents

Application of Artificial Neural Network in Composites Materials, M. Hasan, M.E. Hoque, and S.M. Sapuan

Neural Network Approaches for Defect Detection in Composite Materials, T. D’Orazio, M. Leo, and C. Guaragnella

The Use of Artificial Neural Networks in Damage Detection and Assessment in Polymeric Composite Structures, S. John, A. Kesavan, and I. Herszberg

Damage Identification and Localization of Carbon Fiber-Reinforced Plastic Composite Plate Using Outlier Analysis and Multilayer Perceptron Neural Network, F. Mustapha, S.M. Sapuan, K. Worden, and G. Manson

Damage Localization of Carbon Fiber–Reinforced Plastic Composite and Perspex Plates Using Novelty Indices and the Cross-Validation Set of Multilayer Perceptron Neural Network, F. Mustapha, S.M. Sapuan, K. Worden, and G. Manson

Impact Damage Detection in a Composite Structure Using Artificial Neural Network, S. Mahzan and W. J. Staszewski

Artificial Neural Networks for Predicting the Mechanical Behavior of Cement-Based Composites after 100 Cycles of Aging, E.M. Bezerra, C.A.R. Brito, Jr., A.C. Ancelotti, Jr., and L.C. Pardini

Fatigue Life Prediction of Fiber-Reinforced Composites UsingArtificial Neural Networks, H. El Kadi and Y. Al-Assaf

Optimizing Neural Network Prediction of Composite Fatigue Life Under Variable Amplitude Loading Using Bayesian Regularization, M.I.P. Hidayat and P.S.M. M. Yusoff

Free Vibration Analysis and Optimal Design of the Adhesively Bonded Composite Single Lap and Tubular Lap Joints, M.K. Apalak

Determining Initial Design Parameters by Using Genetically Optimized Neural Network Systems, I.N. Tansel, M. Demetgul, and R.L. Sierakowski

Development of a Prototype Computational Framework for Selection of Natural Fiber-Reinforced Polymer Composite Materials Using Neural Network, S.M. Sapuan and I.M. Mujtaba


About the Editors

S. M. Sapuan is a professor of composite materials and the head of the Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM). He is the vice president and honorary member of Asian Polymer Association; fellow of Institute of Materials, Malaysia; life fellow, International Biographical Association; life member, Institute of Energy, Malaysia; member, Society of Automotive Engineers International; member, International Association of Engineers; member, Plastics and Rubber Institute, Malaysia; and a professional engineer. He has published more than 200 papers in refereed journals, more than 200 papers in conferences/seminars, and six books in engineering.

I. M. Mujtaba is a professor of computational process engineering in the School of Engineering, Design and Technology at the University of Bradford, UK. He is a fellow of the IChemE, a chartered chemical engineer, and a chartered scientist. Professor Mujtaba is actively involved in many research areas like dynamic modeling, simulation, optimization, and control of batch and continuous chemical processes with specific interests in distillation, industrial reactors, refinery processes, and desalination. He has published more than 110 technical papers in major engineering journals, international conference proceedings, and books.

Subject Categories

BISAC Subject Codes/Headings:
SCIENCE / Life Sciences / Biology / General