Computational Fluid Mechanics and Heat Transfer  book cover
3rd Edition

Computational Fluid Mechanics and Heat Transfer

ISBN 9781591690375
Published August 30, 2012 by CRC Press
774 Pages 204 B/W Illustrations

SAVE ~ $38.00
was $190.00
USD $152.00

Prices & shipping based on shipping country


Book Description

Thoroughly updated to include the latest developments in the field, this classic text on finite-difference and finite-volume computational methods maintains the fundamental concepts covered in the first edition. As an introductory text for advanced undergraduates and first-year graduate students, Computational Fluid Mechanics and Heat Transfer, Third Edition provides the background necessary for solving complex problems in fluid mechanics and heat transfer.

Divided into two parts, the book first lays the groundwork for the essential concepts preceding the fluids equations in the second part. It includes expanded coverage of turbulence and large-eddy simulation (LES) and additional material included on detached-eddy simulation (DES) and direct numerical simulation (DNS). Designed as a valuable resource for practitioners and students, new homework problems have been added to further enhance the student’s understanding of the fundamentals and applications.

Table of Contents

Part I: Fundamentals
General Remarks
Comparison of Experimental, Theoretical, and Computational Approaches
Historical Perspective
Partial Differential Equations
Physical Classification
Mathematical Classification
Well-Posed Problem
Systems of Partial Differential Equations
Other PDEs of Interest
Basics of Discretization Methods
Finite Differences
Difference Representation of Partial Differential Equations
Further Examples of Methods for Obtaining Finite-Difference Equations
Finite-Volume Method
Introduction to the Use of Irregular Meshes
Stability Considerations
Application of Numerical Methods to Selected Model Equations
Wave Equation
Heat Equation
Laplace’s Equation
Burgers’ Equation (Inviscid)
Burgers’ Equation (Viscous)
Concluding Remarks

Part II: Application of Numerical Methods to the Equations of Fluid Mechanics and Heat Transfer Governing Equations of Fluid Mechanics and Heat Transfer
Fundamental Equations
Averaged Equations for Turbulent Flows
Boundary-Layer Equations
Introduction to Turbulence Modeling
Euler Equations
Numerical Methods for Inviscid Flow Equations
Method of Characteristics
Classical Shock-Capturing Methods
Flux Splitting Schemes
Flux-Difference Splitting Schemes
Multidimensional Case in a General Coordinate System
Boundary Conditions for the Euler Equations
Methods for Solving the Potential Equation
Transonic Small-Disturbance Equations
Methods for Solving Laplace’s Equation
Numerical Methods for Boundary-Layer-Type Equations
Brief Comparison of Prediction Methods
Finite-Difference Methods for Two-Dimensional or Axisymmetric Steady External Flows
Inverse Methods, Separated Flows, and Viscous–Inviscid Interaction
Methods for Internal Flows
Application to Free-Shear Flows
Three-Dimensional Boundary Layers
Unsteady Boundary Layers
Numerical Methods for the "Parabolized" Navier–Stokes Equations
Thin-Layer Navier–Stokes Equations
"Parabolized" Navier–Stokes Equations
Parabolized and Partially Parabolized Navier–Stokes Procedures for Subsonic Flows
Viscous Shock-Layer Equations
"Conical" Navier–Stokes Equations
Numerical Methods for the Navier–Stokes Equations
Compressible Navier–Stokes Equations
Incompressible Navier–Stokes Equations
Grid Generation
Algebraic Methods
Differential Equation Methods
Variational Methods
Unstructured Grid Schemes
Other Approaches
Adaptive Grids
Appendix A: Subroutine for Solving a Tridiagonal System of Equations
Appendix B: Subroutines for Solving Block Tridiagonal Systems of Equations
Appendix C: Modified Strongly Implicit Procedure

View More


"I have always considered this book the best gift from one generation to the next in computational fluid dynamics. I earnestly recommend this book to graduate students and practicing engineers for the pleasure of learning and a handy reference. The description of the basic concepts and fundamentals is thorough and is crystal clear for understanding. And since 1984, two newer editions have kept abreast to the new, relevant, and fully verified advancements in CFD."
—Joseph J.S. Shang, Wright State University

"Computational Fluid Mechanics and Heat Transfer is very well written to be used as a textbook for an introductory computational fluid dynamics course, especially for those who want to study computational aerodynamics. Most widely used finite difference and finite volume schemes for various partial differential equations of fluid dynamics and heat transfer are presented in such a way that anyone can read and understand them rather easily. In this sense, this book is also a good textbook for self-learners of CFD. In addition to the fundamental and general topics to be covered in a typical CFD textbook, chapters concerning high-speed aerodynamics in depth are also included, which is very important for computational aerodynamicists."
—Prof. Seung O. Park, Korea Advanced Institute of Science and Technology

Support Material


  • Instructor Resources

    To gain access to the instructor resources for this title, please visit the Instructor Resources Download Hub.

    You will be prompted to fill out a regist