Computational Systems Biology Approaches in Cancer Research: 1st Edition (Hardback) book cover

Computational Systems Biology Approaches in Cancer Research

1st Edition

Edited by Inna Kuperstein, Emmanuel Barillot

Chapman and Hall/CRC

184 pages | 19 B/W Illus.

Purchasing Options:$ = USD
Hardback: 9780367344214
pub: 2019-10-14
Available for pre-order

FREE Standard Shipping!


Praise for Computational Systems BiologyApproaches in Cancer Research:

"Complex concepts are written clearly and with informative illustrations and useful links. The book is enjoyable to read yet provides sufficient depth to serve as a valuable resource for both students and faculty."

Trey Ideker, Professor of Medicine, UC Xan Diego, School of Medicine

"This volume is attractive because it addresses important and timely topics for research and teaching on computational methods in cancer research. It covers a broad variety of approaches, exposes recent innovations in computational methods, and provides acces to source code and to dedicated interactive web sites."

Yves Moreau, Department of Electrical Engineering, SysBioSys Centre for Computational Systems Biology, University of Leuven

With the availability of massive amounts of data in biology, the need for advanced computational tools and techniques is becoming increasingly important and key in understanding biology in disease and healthy states. This book focuses on computational systems biology approaches, with a particular lens on tackling one of the most challenging diseases - cancer.  The book provides an important reference and teaching material in the field of computational biology in general and cancer systems biology in particular.

The book presents a list of modern approaches in systems biology with application to cancer research and beyond. It is structured in a didactic form such that the idea of each approach can easily be grasped from the short text and self-explanatory figures. The coverage of topics is diverse: from pathway resources, through methods for data analysis and single data analysis to drug response predictors, classifiers and image analysis using machine learning and artificial intelligence approaches.


  • Up to date using a wide range of approaches
  • Illustrated
  • Access to code/package/web-application

Table of Contents

Chapter 1. Pathway Databases and Network Resources in Cancer

Chapter 2. Tumor Microenvironment Studies in Immuno-oncology Research

Chapter 3. Multi-level Data Analysis: Tools and Approaches

Chapter 4. Mathematical Modelling of Signalling Networks in Cancer

Chapter 5. Single Cell Analysis in Cancer

Chapter 6. Patient Stratification and Treatment Response Prediction

About the Editors

Inna Kuperstein is a researcher at Institut Curie, Paris, France, she is a coordinator of the Atlas of Cancer Signalling Networks (ACSN) project for construction and analysis of detailed signalling maps, development of tools and modelling the maps to predict drug response. She participates in multidisciplinary projects to decipher cell mechanisms rewiring in cancer.

Emmanuel Barillot is the head of the Cancer and Genome: Bioinformatics, Biostatistics and Epidemiology of a Complex System department and scientific director of the bioinformatics platform at Institut Curie. His research focuses on methodological development and statistical analysis of high-throughput biological data and modeling with the aim to improve therapeutic treatments of cancer.

About the Series

Chapman & Hall/CRC Mathematical and Computational Biology

Learn more…

Subject Categories

BISAC Subject Codes/Headings:
COMPUTERS / Programming / Games
COMPUTERS / Bioinformatics