Control and Dynamics in Power Systems and Microgrids: 1st Edition (Hardback) book cover

Control and Dynamics in Power Systems and Microgrids

1st Edition

By Lingling Fan

CRC Press

218 pages

Purchasing Options:$ = USD
Hardback: 9781138034990
pub: 2017-05-02
$119.95
x
eBook (VitalSource) : 9781315269542
pub: 2017-05-12
from $27.48


FREE Standard Shipping!

Description

In traditional power system dynamics and control books, the focus is on synchronous generators. Within current industry, where renewable energy, power electronics converters, and microgrids arise, the related system-level dynamics and control need coverage. Wind energy system dynamics and microgrid system control are covered. The text also offers insight to using programming examples, state-of-the-art control design tools, and advanced control concepts to explain traditional power system dynamics and control. The reader will gain knowledge of dynamics and control in both synchronous generator-based power system and power electronic converter enabled renewable energy systems, as well as microgrids.

Reviews

"The material on renewable energy systems was particularly of interest and the text includes MATLAB code and numerous problems and examples. The text is aimed at students rather than engineers in industry, but it will be valuable to both. The text is nicely presented with a logical layout of the text and its presentation.

This is certainly a book that can be recommended for the bookshelves of engineers working on power systems, power electronics and renewable energies. The hard back is £92 but there is an e-book available at £64.40. It includes more than 200 pages of useful material."

The Applied Control Technology Consortium e-newsletter, August 2017

"The author’s goal is to provide a bridge between traditional control and microgrid control. That goal is fully achieved. The reader learns by example problems and solutions with the provided MATLAB code. I wholeheartedly recommend Control and Dynamics in Power Systems and Microgrids as an extension to traditional text presentations of power system analysis. I applaud the author’s presentation of problems and solutions with MATLAB code as a thorough learning tool."

IEEE Power & Energy Magazine, May/June 2018 Issue

Table of Contents

1 Introduction

1.1 Why a new textbook

1.2 Structure of this book

2 Dynamic Simulation

2.1 Numerical integration methods.

2.2 Dynamic simulation for an RLC circuit

2.3 MATLAB/Simulink for model building and dynamic simulation

2.4 MATLAB commands for linear system simulation

2.5 Summary

3 Frequency Control

3.1 Important facts

3.2 Plant model: swing equations

3.3 How to reduce steady-state frequency deviation

3.4 How to eliminate frequency deviation

3.5 Validation of Frequency Control Design

3.6 More examples on frequency control

4 Synchronous Generator Models

4.1 Generator steady-state circuit model

4.2 Space vector concept

4.3 Synchronous Generators with Salient rotors.

4.5 Simplified dynamic model -Flux decay model

5 Voltage Control of a Synchronous Generator

5.1 Introduction

5.2 Plant model: no dynamics included

5.3 Plant model: rotor flux dynamics only

5.4 Voltage control design based on a first-order plant model

5.5 Voltage control design considering swing dynamics

5.6 Summary

6 Frequency and Voltage Control in a Microgrid

6.1 Control of a Voltage Source Converter (VSC)

6.2 Power sharing methods

7 Large-Signal Stability

7.1 Introduction

7.2 Lyapunov stability criterion

7.3 Equal-area method

7.4 Time-domain Simulation Results.

8 Small-Signal Stability

8.1 SMIB system stability

8.2 Inter-area oscillations

8.3 Subsynchronous Resonances

Index

About the Author

Dr. Lingling Fan received her Bachelor and Master degrees in Electrical Engineering from Southeast University (Nanjing, China) in 1994 and 1997, respectively. She joined West Virginia University (Morgantown, West Virginia, USA) in 1998 and received her Ph.D. degree in Dec. 2001. Dr. Fan was with Midwest ISO (MISO) 2001 to 2007. She led projects on transmission system reliability, planning, operation and economics. From 2007 to 2009, Dr. Fan was with North Dakota State University (Fargo, North Dakota) as an assistant professor. Since 2009, Dr. Fan has been with the University of South Florida (USF) at Tampa Florida.

Currently, she is an associate professor at the Department of Electrical Engineering of USF. Dr. Fan’s research area covers power systems, power electronics, and electric machines. Her focus areas include dynamic systems and optimization. In dynamic systems area, her research covers modeling, analysis, estimation and control with applications in wind energy grid integration, microgrids, High Voltage Direct Current (HVDC) systems, energy storage systems, and phasor measurement unit (PMU). In optimization area, her research focuses on implementing optimization in smart building operation, energy storage operation, and power electronic converter controls.

Subject Categories

BISAC Subject Codes/Headings:
TEC007000
TECHNOLOGY & ENGINEERING / Electrical
TEC008000
TECHNOLOGY & ENGINEERING / Electronics / General
TEC031020
TECHNOLOGY & ENGINEERING / Power Resources / Electrical