Design and Control of Grid Connected Photovoltaic System  book cover
SAVE
$26.00
1st Edition

Design and Control of Grid Connected Photovoltaic System



  • Available for pre-order on March 24, 2023. Item will ship after April 14, 2023
ISBN 9781032189741
April 14, 2023 Forthcoming by CRC Press
312 Pages 156 B/W Illustrations

FREE Standard Shipping
 
SAVE $26.00
was $130.00
USD $104.00

Prices & shipping based on shipping country


Preview

Book Description

The current model for electricity generation and distribution is dominated by centralized power plants which are typically associated with combustion (coal, oil, and natural) or nuclear generation units. These power models require distribution from the center to outlying consumers and has many disadvantages concerning the electric utilities, transmission and distribution, and greenhouse gas emissions. This resulted for the modelling and development of cleaner renewable power generation with alternative sources such as photovoltaic, wind, and other sources. Further, due to matured PV technology, constant drop-in installation cost, greenhouse emissions reductions, energy efficiency, reduced transmission and distribution investments, minimization of the electric losses, and network support, the development of PV systems is proliferating. In view of this development, this book provides an idea for setting up the PV plant from initial study of the site to plan sizing. Once the initial planning is covered then the book focuses on the modeling aspects of power electronics converter and control elements associated with it keeping the operating standards specified for the development of distributed generation systems in check.

This book will be useful for the industrial professionals who are modeling PV plants and all the necessary information related to the field will be available in the book

Table of Contents

1: Site Study for Grid Connected PV systems.  2: Power Electronics Converter Designing. Part 1: DC side.  3: Power Electronics Converter Designing. Part 2: AC side.  4: Standard for Operation of Distributed Generation systems.  5: Stand-Alone Control Operation of PV inverter.  6: Grid Connected operation of PV inverter.  7: Advance Control Feature for Grid Connected PV system

 

...
View More

Author(s)

Biography

Mohammed Ali Khan (S’17-M’22) received his B.Tech. degree in Electrical and Electronics Engineering from Karunya University, Coimbatore, India, in 2013, and M.Tech. degree in Power System from Amity University, Noida, India, in 2016. He completed his Ph.D. degree in Power Management of Grid Connected Distribution Generation with the Advanced Power Electronics Research Laboratory, Department of Electrical Engineering, Jamia Millia Islamia (A Central University), New Delhi, India, in 2021. He is currently working as a Post-Doctoral Fellow with the Department of Electrical Power Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic.

He was a Visiting Researcher at the Center of Reliable Power Electronics, Aalborg University, Aalborg, Denmark, from October to December 2020. He had also worked as Guest Faculty in the Department of Electrical Engineering, Jamia Millia Islamia (A Central University), New Delhi, India from 2017 to 2020. He has many publications in peer-reviewed journals and presented his research articles in several international conferences. His area of research is artificial intelligence, power electronics, and their application in renewable energy systems, power quality improvements, and reliability.

Ahteshamul Haque (M’13-SM’14) received the B.Tech. degree in Electrical Engineering from Aligarh Muslim University, Aligarh, India, in 1999, the master’s degree in Electrical Engineering from IIT Delhi, New Delhi, India, in 2000, and the Ph.D. degree in Electrical Engineering from the Department of Electrical Engineering, Jamia Millia Islamia University, New Delhi, India, in 2015. Prior to academics, he was working in the research and development unit of world reputed multinational industries and his work is patented in the USA and Europe. He is currently an Associate Professor with the Department of Electrical Engineering, Jamia Millia Islamia University. He has established Advance Power Electronics Research Laboratory, Department of Electrical Engineering, Jamia Millia Islamia. He is working as a Principal Investigator of the MHRD-SPARC project and other research and development projects. He is the recipient of IEEE PES Outstanding Engineer Award for the year 2019. He has authored or co-authored around 100 publications in international journals and conference proceedings. He is Senior Member of IEEE. His current research interests include power converter topologies, control of power converters, renewable energy, and energy efficiency, reliability analysis, electric vehicle operations.

V S Bharath Kurukuru (S’18- M’22) received his B.Tech. degree in Electrical and Electronics Engineering from Avanthi’s Research and Technological Academy, Vizianagaram, India, in 2014, and M.Tech. degree in Power Systems from Amity University, Noida, India, in 2016. He completed his Ph.D. degree in Intelligent Monitoring of Solar Photovoltaic System with the Advanced Power Electronics Research Laboratory, Department of Electrical Engineering, Jamia Millia Islamia (A Central University), New Delhi, India, in 2021. He is currently working as a Scientist (Packaging & Multiphysics) at Power Electronics Research Division, Silicon Austria Labs GmbH, Villach, Austria.

He was a Visiting Researcher at the Center of Reliable Power Electronics, Aalborg University, Aalborg, Denmark, from August to October 2019. His area of research is fault diagnosis, condition monitoring, and reliability of power electronics converters in renewable energy systems and electric vehicles.