Entrepreneurial Complexity: Methods and Applications, 1st Edition (Hardback) book cover

Entrepreneurial Complexity

Methods and Applications, 1st Edition

Edited by Matthias Dehmer, Frank Emmert-Streib, Herbert Jodlbauer

CRC Press

180 pages | 21 B/W Illus.

Purchasing Options:$ = USD
Hardback: 9780815370017
pub: 2019-02-18
SAVE ~$22.49
$149.95
$127.46
x


FREE Standard Shipping!

Description

Entrepreneurial Complexity: Methods and Applications deals with theoretical and practical results of Entrepreneurial Sciences and Management (ESM), emphasising qualitative and quantitative methods. ESM has been a modern and exciting research field in which methods from various disciplines have been applied. However, the existing body of literature lacks the proper use of mathematical and formal models; individuals who perform research in this broad interdisciplinary area have been trained differently. In particular, they are not used to solving business-oriented problems mathematically. This book utilises formal techniques in ESM as an advantage for developing theories and models which are falsifiable.

Features

  • Discusses methods for defining and measuring complexity in entrepreneurial sciences
  • Summarises new technologies and innovation-based techniques in entrepreneurial sciences
  • Outlines new formal methods and complexity-models for entrepreneurship
  • To date no book has been dedicated exclusively to use formal models in Entrepreneurial Sciences and Management

Table of Contents

1 Entrepreneurs for Renewables: Emergence of Innovation and

Entrepreneurship in Complex Social Systems

Diana Süsser, Barbara Weig, Martin Döring and

Beate M.W. Ratter

2 Entrepreneurial Network Effects: Empirical Observations of

Entrepreneurial Networks in a World of Complexity

John T. Scott

3 Entrepreneurial Process: The Overbearing Role of Complex Social Network

Adekiya Adewale and Ahmed Musbah Aboyssir

4 Sustainable Entrepreneurial Activity within Complex Economic Systems

Panagiotis E. Petrakis and Kyriaki I. Kafka

5 Integration Opportunities of Stability-Oriented Processes for Real Estate Transaction Entities

Linda Kauškale and Ineta Geipele

6 Entrepreneurial Dispositions Personality Inventory: Development and Validation

Konrad Janowski, Marcin Waldemar Staniewski and Katarzyna Awruk

7 Mapping the Entrepreneurship from a Gender Perspective

Magdalena Suárez-Ortega, María del Rocío Gálvez-García and María Fe Sánchez-García

About the Editors

Matthias Dehmer is a professor at the University of Applied Sciences Upper Austria, Steyr School of Management and UMIT – The Health and Life Sciences University in Austria. He also holds a guest professorship at Nankai University, College of Artificial Intelligence in China. His research interests are in graph theory, complex networks, complexity, data science, machine learning, big data analytics, and information theory. In particular, he is also working on machine learningbased methods to design new data analysis methods for solving problems in manufacturing and production.

Frank Emmert-Streib is a professor at Tampere University, Finland, heading the Predictive Society and Data Analytics Lab. His research interests are in the field of data science, machine learning and network science in the development and application of methods from statistics and machine learning for the analysis of big data from genomics, finance, social media and business.

Herbert Jodlbauer is a professor at the University of Applied Sciences Upper Austria, Steyr School of Management and also acts as a director of studies of the bachelor study program Production and Management and the master study program Operations Management. Furthermore, he leads the trans-faculty institute of Smart Production. His research is primarily concerned with production planning, time continuous production models, financial valuation of production related decisionmaking as well as digitalization.

Subject Categories

BISAC Subject Codes/Headings:
BUS049000
BUSINESS & ECONOMICS / Operations Research
BUS061000
BUSINESS & ECONOMICS / Statistics
MAT003000
MATHEMATICS / Applied