1st Edition

Functionalization of Molecular Architectures
Advances and Applications on Low-Dimensional Compounds

Edited By

Kazuhiro Shikinaka

ISBN 9789814774611
Published November 26, 2018 by Jenny Stanford Publishing
174 Pages 10 Color & 59 B/W Illustrations

USD $149.95

Prices & shipping based on shipping country


Book Description

Low-dimensional compounds are molecules that correspond to various shapes, such as rod, ladder (one-dimensional compounds), and sheet (two-dimensional compounds). They are ordinarily found in electromagnetic fields. Recently, versatile low-dimensional compounds were proposed for use as components of various functional materials. These new-class low-dimensional compounds contribute significantly to industrial/materials sciences.

The molecular architecture consisting of low-dimensional compounds can also be found in nature. One example is the cell cytoskeleton, which is a network- or bundle-like architecture consisting of rod-like protein assemblies. The cell accomplishes its motility by structural transition of the cytoskeleton—that is, phase transition of the architecture of low-dimensional compounds in response to some stimuli induces shape changes in cells. Another example is nacre, which is composed of layered aragonite platelets, usually a metastable CaCO3 polymorph. The layered inorganic platelets give nacre its stiffness and noncombustibility. Thus, the molecular architecture of low-dimensional compounds in natural life contributes to their functionality.

This book reviews various advanced studies on the application of low-dimensional compounds and is, therefore, important for the development of materials sciences and industrial technologies.

Table of Contents

Low-dimensional Compounds for Diverse Material Sciences

Stimuli-responsive Materials Consisting of Rigid Cylindrical Inorganic Low-dimensional Compound "Imogolite"

Preparation, Modification, and Hybridization of One-dimensional Ionic Ladder-like Polysilsesquioxanes

Dimensionality transformation of layered materials toward the design of functional nanomaterials

Inorganic Nanosheets as Soft Materials

View More



Kazuhiro Shikinaka received his doctorate from Hokkaido University in 2008. He was assistant professor at the Graduate School of Engineering, Tokyo University of Agriculture and Technology, Japan, from October 2008 to March 2017. Currently, he is a senior researcher at the National Institute of Advanced Industrial Science and Technology, Japan. His research focuses on the functional materials consisting of rigid inorganic cylindrical clay minerals and the full utilization of plant biomass as basic chemical products. He is a recipient of the Award for Encouragement of Research in Clay Science (Clay Science Society of Japan, 2018), the Chemical Innovation Encouragement Prize (Japan Association for Chemical Innovation, 2016), the Award for Encouragement of Research in Polymer Science (Society of Polymer Science, Japan, 2014), the Award for Encouragement of Research in Fiber Science (Society of Fiber Science and Technology Japan, 2014), The Clay Science Society of Japan Best Presentation Award (Oral session, 2014), and the FAPS Young Scientist Poster Award (2009).