Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications (Paperback) book cover

Genetic Algorithms and Genetic Programming

Modern Concepts and Practical Applications

By Michael Affenzeller, Stefan Wagner, Stephan Winkler, Andreas Beham

© 2009 – Chapman and Hall/CRC

379 pages | 138 B/W Illus.

e–Inspection Copy
Purchasing Options:$ = USD
Paperback: 9781138114272
pub: 2018-04-16
SAVE ~$15.99
Hardback: 9781584886297
pub: 2009-04-09
SAVE ~$42.00
eBook (VitalSource) : 9781420011326
pub: 2009-04-09
from $39.98

FREE Standard Shipping!


Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications discusses algorithmic developments in the context of genetic algorithms (GAs) and genetic programming (GP). It applies the algorithms to significant combinatorial optimization problems and describes structure identification using HeuristicLab as a platform for algorithm development.

The book focuses on both theoretical and empirical aspects. The theoretical sections explore the important and characteristic properties of the basic GA as well as main characteristics of the selected algorithmic extensions developed by the authors. In the empirical parts of the text, the authors apply GAs to two combinatorial optimization problems: the traveling salesman and capacitated vehicle routing problems. To highlight the properties of the algorithmic measures in the field of GP, they analyze GP-based nonlinear structure identification applied to time series and classification problems.

Written by core members of the HeuristicLab team, this book provides a better understanding of the basic workflow of GAs and GP, encouraging readers to establish new bionic, problem-independent theoretical concepts. By comparing the results of standard GA and GP implementation with several algorithmic extensions, it also shows how to substantially increase achievable solution quality.

Table of Contents


Simulating Evolution: Basics about Genetic Algorithms

The Evolution of Evolutionary Computation

The Basics of Genetic Algorithms (GAs)

Biological Terminology

Genetic Operators

Problem Representation

GA Theory: Schemata and Building Blocks

Parallel Genetic Algorithms

The Interplay of Genetic Operators

Bibliographic Remarks

Evolving Programs: Genetic Programming

Introduction: Main Ideas and Historical Background

Chromosome Representation

Basic Steps of the Genetic Programming (GP)-Based Problem Solving Process

Typical Applications of GP

GP Schema Theories

Current GP Challenges and Research Areas


Bibliographic Remarks

Problems and Success Factors

What Makes GAs and GP Unique Among Intelligent Optimization Methods?

Stagnation and Premature Convergence

Preservation of Relevant Building Blocks

What Can Extended Selection Concepts Do to Avoid Premature Convergence?

Offspring Selection (OS)

The Relevant Alleles Preserving Genetic Algorithm (RAPGA)

Consequences Arising out of Offspring Selection and RAPGA

SASEGASA—More Than the Sum of All Parts

The Interplay of Distributed Search and Systematic Recovery of Essential Genetic Information

Migration Revisited

SASEGASA: A Novel and Self-Adaptive Parallel Genetic Algorithm

Interactions between Genetic Drift, Migration, and Self-Adaptive Selection Pressure

Analysis of Population Dynamics

Parent Analysis

Genetic Diversity

Characteristics of Offspring Selection and the RAPGA


Building Block Analysis for Standard GAs

Building Block Analysis for GAs Using Offspring Selection

Building Block Analysis for the RAPGA

Combinatorial Optimization: Route Planning

The Traveling Salesman Problem

The Capacitated Vehicle Routing Problem

Evolutionary System Identification

Data-Based Modeling and System Identification

GP-Based System Identification in HeuristicLab

Local Adaption Embedded in Global Optimization

Similarity Measures for Solution Candidates

Applications of Genetic Algorithms: Combinatorial Optimization

The Traveling Salesman Problem

Capacitated Vehicle Routing

Data-Based Modeling with Genetic Programming

Time Series Analysis


Genetic Propagation

Single Population Diversity Analysis

Multi-Population Diversity Analysis

Code Bloat, Pruning, and Population Diversity

Conclusion and Outlook

Symbols and Abbreviations



About the Authors

Michael Affenzeller is Professor for Applied Computer Science at the Department of Software Engineering of the Upper Austrian University of Applied Sciences in Hagenberg, Austria, as well as head of the Hueristic and Evolutionary Algorithms Laboratory research group. His interests include Heuristic Algorithms, Evolutionary Algorithms, Algorithm Theory and Development, Production Planning and Logistics Optimization, Nonlinear Systems Identification, Structure Identification, Regression and Time Series, Heuristic Optimization Techniques in Bioinformatics / Chemoinformatics.

Stefan Wagner is an associate professor of strategy (with tenure). Stefan joined ESMT Berlin in February 2011 as an assistant professor and was the TUSIAD/TCCI Chair in European Economic Integration from 2014 to 2015. Previously he was an assistant professor in the Institute of Innovation Research, Technology Management, and Entrepreneurship (INNO-tec) at the Ludwig Maximilian University of Munich, Germany. Stefan received his Habilitation in 2010 and his Doctorate in Management (summa cum laude) in 2005 from LMU. Stefan's research interests cover the intersection of firm strategy, technological innovation, industrial organization and law. Currently, he is primarily interested in the interaction of the changing landscape of intellectual property rights (in particular patent systems) and firms' long term strategy regarding their innovative activities. From a more practical perspective, he is also interested in venture creation and growth strategies for young firms.

Stephan Winkler is head of the Bioinformatics Research Group at University of Applied Sciences, Upper Austria. His research interests include Theory and Application of Genetic Algorithms and Genetic Programming, Machine Learning and Data Mining, Bioinformatics, Grey Box Identification of Nonlinear Systems (especially in the context of mechatronic applications), Software Development.

Andreas Beham is a senior researcher at the School of Informatics, Communications and Media at the University of Applied Sciences, Upper Austria. His research interests include the development and analysis of solution methods and their application to real-world relevant problems. In particular, he is interested in developing a guidance system for choosing and parameterizing metaheuristic methods.

About the Series

Numerical Insights

Learn more…

Subject Categories

BISAC Subject Codes/Headings:
COMPUTERS / Database Management / Data Mining
COMPUTERS / Programming / Algorithms
MATHEMATICS / Number Systems