Green Aviation: Reduction of Environmental Impact Through Aircraft Technology and Alternative Fuels (e-Book) book cover

Green Aviation

Reduction of Environmental Impact Through Aircraft Technology and Alternative Fuels

Edited by Emily S. Nelson, D.R. Reddy

CRC Press

358 pages

Purchasing Options:$ = USD
Hardback: 9780415620987
pub: 2017-09-07
$219.95
x
eBook (VitalSource) : 9780203119969
pub: 2018-06-12
from $27.48


FREE Standard Shipping!

Description

Aircraft emissions currently account for ~3.5% of all greenhouse gas emissions. The number of passenger miles has increased by 5% annually despite 9/11, two wars and gloomy economic conditions. Since aircraft have no viable alternative to the internal combustion engine, improvements in aircraft efficiency and alternative fuel development become essential.

This book comprehensively covers the relevant issues in green aviation. Environmental impacts, technology advances, public policy and economics are intricately linked to the pace of development that will be realized in the coming decades. Experts from NASA, industry and academia review current technology development in green aviation that will carry the industry through 2025 and beyond. This includes increased efficiency through better propulsion systems, reduced drag airframes, advanced materials and operational changes. Clean combustion and emission control of noise, exhaust gases and particulates are also addressed through combustor design and the use of alternative fuels. Economic imperatives from aircraft lifetime and maintenance logistics dictate the drive for "drop-in" fuels, blending jet-grade and biofuel. New certification standards for alternative fuels are outlined. Life Cycle Assessments are used to evaluate worldwide biofuel approaches, highlighting that there is no single rational approach for sustainable buildup. In fact, unless local conditions are considered, the use of biofuels can create a net increase in environmental impact as a result of biofuel manufacturing processes. Governmental experts evaluate current and future regulations and their impact on green aviation. Sustainable approaches to biofuel development are discussed for locations around the globe, including the US, EU, Brazil, China and India.

Table of Contents

Part I. Environmental impacts of aviation

1. Noise emissions from commercial aircraft

Edmane Envia

1.1 Introduction

1.2 Sources of aircraft noise

1.3 Aircraft component noise levels (example)

1.4 Summary

2. Aircraft emissions: gaseous and particulate

Changlie Wey and Chi-Ming Lee

2.1 Introduction

2.2 Gaseous emissions

2.3 Particle emissions

2.4 Alternative fuels

2.5 Summary

3. Improvement of aeropropulsion fuel efficiency through engine design

Kenneth L. Suder and James D. Heidmann

3.1 Introduction

3.2 Early history of NASA Glenn Research Center aeropropulsion fuel efficiency efforts, 1943 to 1958

3.3 Introduction of turbofan engines and Improved propulsive efficiency

3.4 Energy crisis of 1970s and NASA Aeronautics Response

3.5 NASA’s role in component test cases and computational fluid dynamics development

3.6 Current NASA efforts at reduced fuel consumption

3.7 Summary

Part II. Technologies to mitigate environmental impacts

4. Noise mitigation strategies

Dennis L. Huff

4.1 Introduction

4.2 Noise reduction methods

4.3 Future Noise-Reduction Technologies

4.4 Summary

5. Advanced materials for green aviation

Ajay Misra

5.1 Introduction

5.2 Lightweight materials

5.3 Smart materials

5.4 High-temperature materials

5.5 Materials for electric aircraft

5.6 Summary

6. C lean combustion and emission control

Changlie Wey and Chi-Ming Lee

6.1 Introduction

6.2 Products of combustion

6.3 Emissions control

6.4 Engine NOx control strategies

6.5 Tradeoffs involved in reducing NOx emissions

6.6 Summary

7. Airspace systems technologies

Banavar Sridhar

7.1 Introduction

7.2 Current airspace operations

7.3 Advanced airspace operations concepts

7.4 Next generation air transportation system technologies

7.5 Conclusions

8. Alternative fuels and green aviation

Emily S. Nelson

8.1 Introduction

8.2 Aviation fuel requirements

8.3 Fuel properties

8.4 Biofuel feedstocks for aviation fuels

8.5 Manufacturing stages

8.6 Life cycle assessment

8.7 Conclusions

Appendix. Basic terminology and concepts in hydrocarbon chemistry

9. Overview of alternative fuel drivers, technology options, and demand fulfillment

Kirsten Van Fossen, Kristin C. Lewis, Robert Malina, Hakan Olcay and James I. Hileman

9.1 Introduction

9.2 Alternative fuel drivers

9.3 Technology options

9.4 Meeting demand for alternative jet fuel

9.5 Conclusions 244

10. Biofuel feedstocks and supply chains: how ecological models can assist with design and scaleup

Kristin C. Lewis, Dan F.B. Flynn and Jeffrey J. Steiner

10.1 Introduction

10.2 Challenges of developing an agriculturally based advanced biofuel industry

10.3 Potential benefits of scaled-up biofuel feedstock production

10.4 Regionalized biomass production and linkage to conversion technology

10.5 Applying ecological models to biofuel production

10.6 Summary

11. Microalgae feedstocks for aviation fuels

Mark S. Wigmosta, Andre M. Coleman, Erik R. Venteris and Richard L. Skaggs

11.1 Introduction

11.2 Algae growth characteristics

11.3 Large-scale production potential and resource constraints

11.4 Two-billion gallon per year case study

11.5 Summary and conclusions

12. Certification of alternative fuels

Mark Rumizen and Tim Edwards

12.1 Introduction

12.2 Background

12.3 ASTM certification process

12.4 U.S. Federal Aviation Administration certification

12.5 Future pathways

13. Environmental performance of alternative jet fuels

Hakan Olcay, Robert Malina, Kristin Lewis, Jennifer Papazian, Kirsten van Fossen, Warren Gillette, Mark Staples, Steven R.H. Barrett, Russell W. Stratton and James I. Hileman

13.1 Introduction

13.2 Evaluating greenhouse gas emissions and impacts of alternative fuels on global climate change

13.3 Water

13.4 Biodiversity

13.5 Conclusions

14. Perspectives on the future of green aviation

Jay E. Dryer

14.1 Introduction

14.2 Key factors affecting the future of green aviation

14.3 Required technology for aircraft development and design

14.4 Required technology for greater alternative fuel utilization

14.5 Possible disruptive technologies

14.6 Forecast

14.7 Summary

About the Editors

Emily S. Nelson is a research engineer at the NASA Glenn Research Center (GRC) specializing in interdisciplinary research at the intersection of fluid mechanics and heat transport, materials science, biology and/or human physiology. She received her B.S. in Mechanical Engineering from the Illinois Institute of Technology, Chicago, IL (1983); M.S. in Mechanical Engineering from the Illinois Institute of Technology (1986); and her Ph.D. in Mechanical Engineering from the University of California at Berkeley (1998). Dr. Nelson has been employed as a research engineer by NASA GRC since 1989. She is conducting numerical simulations of industrial algae growth processes, which combine hydrodynamics with biokinetics to evaluate and develop system designs and operating protocols for biomass yield, consumption of waste CO2 generated by a power plant, and power requirements.

Dhanireddy Ramalinga "D.R" Reddy, Chief of the Aeropropulsion Division at NASA Glenn Research Center , Cleveland, Ohio, is responsible for providing enabling capabilities to the aerospace community by leading research and developing technology in the areas of turbomachinery, combustion, fuels/propellants, icing, inlets, nozzles, propulsion system simulation, engine systems, and computational methods. He received his Bachelor of Engineering in Mechanical Engineering (1971) from Sri Venkateswara University, A. P., India; Master of Engineering in Aeronautical Engineering (1974) from Indian Institute of Science, Bangalore; and Ph.D. in Aerospace Engineering (1983) from the University of Cincinnati. Dr. Reddy joined NASA GRC in 1991, serving as Chief of the Computational Fluid Dynamics Branch and Senior Consultant, and focusing research on developing a predictive capability to accurately simulate the complex flow features of advanced aerospace propulsion systems.

About the Series

Sustainable Energy Developments

ISSN 2164-0645

Renewable energy sources and sustainable policy options, including energy efficiency and energy conservation, can provide long-term solutions for key-problems of industrialized, developing and transition countries by providing clean and domestically available energy and, at the same time, decreasing dependence on fossil fuel imports and reducing greenhouse gas emissions. The book series will serve as a multi-disciplinary resource linking renewable energy with human society. The book series fulfils the rapidly growing worldwide interest in sustainable energy solutions. It covers all fields of renewable energy and their possible applications will be addressed not only from a technical point of view, but also from economic, financial, social, political, legislative and regulatory viewpoints.
The book series is considered to become a state-of-the-art source for a large group of readers comprising different stakeholders and professionals, including government and non-governmental organizations and institutions, international funding agencies, universities, public energy institutions, public health and other relevant institutions as well as to civil society.

Editorial Board
Jochen Bundschuh (Series Editor)
University of Southern Queensland, Toowoomba, Australia & Royal Institute of Technology (KTH), Stockholm, Sweden
Morgan Bazilian Senior Advisor on Energy and Climate Change to the Director-General, United Nations Industrial Development Organisation (UNIDO), Vienna, Austria
Maria da Graça Carvalho Member of the European Parliament, Brussels & professor at Instituto Superior Técnico, Technical University of Lisbon, Portugal
Robert K. Dixon Leader, Climate and Chemicals, The Global Environment Facility, The World Bank Group, Washington, DC
Rainer Hinrichs-Rahlwes President of the European Renewable Energies Federation (EREF); Board Member of the German Renewable Energy Federation (BEE), Berlin, Germany
Veena Joshi Senior Advisor-Energy, Section Climate Change and Development, Embassy of Switzerland, New Delhi, India
Eric Martinot Senior Research Director, Institute for Sustainable Energy Policies (ISEP), Nakano, Tokyo & Tsinghua University, Tsinghua-BP Clean Energy Research and Education Center, Beijing, China

FIELDS COVERED• Access to clean energy • Bioenergy • Biofuels • Bio-inspired solar fuel production • Capacity building and communication strategies • Climate policy • Electric, hybrid plug-in, and hybrid vehicles • Energizing development • Energy autonomy and cities • Energy behavior • Energy conservation • Energy efficiency • Energy for the poor: The renewable options for rural electrification • Energy meteorology • Energy scenarios • Energy security • Energy storage • Energy-efficient buildings • Energy-efficient lighting • Enhanced Geothermal Systems (EGS) • Financing energy efficiency • Fuel cells • Gender and energy • Geothermal energy for direct use (district heating, industry, agriculture, etc.) • Geothermal power generation • Green and greening computing • Green construction materials • Heat pumps • Hydrogen technologies • Labeling energy performance • Low energy architecture • Nano-energy • Renewable energy scenarios • Renewable energy strategies and policies • Renewable vehicle energy • Renewables energy for drinking water solutions • Renewables for poverty reduction • Renewables for small islands • Solar cars • Solar PV • Solar heating and cooling • Sustainable energy policies • Sustainable hydropower • Sustainable public transportation • Tidal energy • Water desalination using renewables • Wave power • Wind energy

EDITORIAL ADVISORY BOARD:
Suresh K. Aggarwal, Chicago, USA - Ishfaq Ahmad, Arlington, USA - Sergio M. Alcocer, Mexico - Said Al-Hallaj, Chicago, USA - Khaled A. Al-Sallal, Al-Ain, UAE - Hussain Al-Towaie, Aden, Yemen - Joel R. Anstrom, University Park, USA - Kalyan Annamalai, College Station, USA - Jaco Appelman, Delft, The Netherlands - Santiago Arnaltes, Madrid, Spain - François Avellan, Lausanne, Switzerland - AbuBakr S. Bahaj, Southampton, UK - Ronald Bailey, Chattanooga, USA - Ramesh C Bansal, Brisbane, Australia - Ruggero Bertani, Rome, Italy - Prosun Bhattacharya, Stockholm, Sweden - Peter Birkle, Cuernavaca, Mexico - John Boland, Adelaide, Australia - Frances Brazier, Delft, The Netherlands - Gary W. Brudvig, New Haven, USA - Jens Burgtorf, New Delhi, India - Kirk W. Cameron, Blacksburg, USA - Thameur Chaibi, Tunis, Tunisia - Shih Hung Chan, Taipei, Taiwan - D. Chandrashekharam, Mumbai, India - S.K. Jason Chang, Taipei, Taiwan - Shanta Chatterji, Mumbai, India - Falin Chen, Taipei, Taiwan - Siaw Kiang Chou, Singapore - Daniel Cohn, Cambridge, USA - Erik Dahlquist, Västerås, Sweden - Holger Dau, Berlin, Germany - Sudipta De, Kolkata, India - Gilberto De Martino Jannuzzi, Campinas, S.P., Brazil - Kristin Deason, Berlin, Germany & Washington, USA - Tom Denniss, Macquarie Park, Australia - Roland Dimai, Dornbirn, Austria - Gregory Dolan, Alexandria, USA - Claus Doll, Karlsruhe, Germany - Peter Droege, Newcastle, Australia - Gautam Dutt, Buenos Aires, Argentina - James Edmonds, College Park, USA - Adeola Ijeoma Eleri, Abuja, Nigeria - Ali Emadi, Chicago, USA - Hans-Josef Fell, Berlin, Germany - Bruno Francois, Paris, France - Andrew Frank, Davis, USA - Petra Fromme, Phoenix, USA - Chris Gearhart, Dearborn, USA - John Golbeck, University Park, USA - José Goldemberg, Sao Paulo, Brazil - Barbara Goodman, Golden, USA - James Gover, Flint, USA - Amelia Hadfield, Brussel, Belgium - Jan Hoinkis, Karlsruhe, Germany - Einar Hope, Bergen, Norway - Yoichi Hori, Tokyo, Japan - Ernst Huenges, Potsdam, Germany - Iqbal Husain, Akron, USA - Gerald W. Huttrer, Frisco, USA - Tetsunari Iida, Tokyo, Japan - Rainer Janssen, München, Germany - Ma Jiming, Beijing, P.R. China - Guðni Jóhannesson, Reykjavík, Island - Thomas B. Johansson, Lund, Sweden - Perry T. Jones, Knoxville, USA - Soteris Kalogirou, Limasol, Cyprus - Ghazi A. Karim, Calgary, Canada - Arun Kashyap, New York, USA - Pertti Kauranen, Tampere, Finland - Lawrence L. Kazmerski, Golden, USA - Claudia Kemfert, Berlin, Germany - Thomas Kempka, Potsdam, Germany - Madhu Khanna, Urbana, USA - Ånund Killingtveit, Trondheim, Norway - Rob Kool, Utrecht, The Netherlands - Israel Koren, Amherst, USA - Arun Kumar, Uttarakhand, India - Naveen Kumar, Delhi, India - Chung K. Law, Princeton, NJ, USA - Harry Lehmann, Dessau, Germany - Dennis Leung, Hong Kong - Xianguo Li, Waterloo,Canada - Søren Linderoth, Roskilde, Denmark - Hongtan Liu, Miami,  USA - Wolfgang Lubitz, Mülheim an der Ruhr, Germany - Thomas Ludwig, Hamburg,Germany - Wolfgang F. Lutz, Ter Aar, The Netherlands / Asunción, Paraguay - Thomas Lynge Jensen, Suva, Fiji Islands - Sébastien Martinet, Grenoble, France - Omar R. Masera, Morelia, Michoacán, Mexico - Chang Mei, Cambridge, MA, USA - Pietro Menga, Milan, Italy - Gerd Michelsen, Lüneburg, Germany - James Miller, Argonne, USA - Daniel Mosse, Pittsburgh, USA - Urs Muntwyler, Burgdorf, Switzerland - Jayant K. Nayak, Mumbai, India - Emily Nelson, Cleveland, USA - Kim Nielsen, Virum, Denmark - Galal Osman, Cairo, Egypt - Alessandro Palmieri, Jakarta, Indonesia - Jérôme Perrin, Guyancourt, France - Gianfranco Pistoia, Rome, Italy - Josep Puig, Barcelona, Spain - Kaushik Rajashekara, Indianapolis, USA - Wattanapong Rakwichian, Chiang Mai, Thailand - Sanjay Ranka, Gainesville, USA - Klaus Rave, Kiel, Germany / Brussels, Belgium - Athena Ronquillo-Ballesteros, Washington, USA - Jack Rosebro, Los Angeles, USA - Marc A. Rosen, Oshawa, ON, Canada - Harald N. Røstvik, Stavanger, Norway - Ladislaus Rybach, Zurich, Switzerland - Ambuj D. Sagar, New Delhi, India - Roberto Schaeffer, Rio de Janeiro, Brazil - Frank Scholwin, Leipzig, Germany - Lisa Schipper, Bangkok, Thailand - Dietrich Schmidt, Kassel, Germany - Jamal Shrair, Budapest, Hungary - Semida Silveira, Stockholm, Sweden - Subhash C. Singhal, Richland, USA - Erik J. Spek, Newmarket, Canada - Gregory Stephanopoulos, Cambridge, MA, USA - Robert Stüssi, Lisboa, Portugal - Mario-César Suarez-Arriaga, Morelia, Mexico - Lawrence E. Susskind, Cambridge, MA, USA - Eoin Sweeney, Dublin, Ireland - Antoni Szumanowski, Warsaw, Poland - Geraldo Lúcio Tiago Filho, Minas Gerais, Brazil - Alberto Troccoli, Canberra, Australia - Eftihia Tzen, Pikermi, Greece - Hamdi Ucarol, Gebze/Kocaeli, Turkey - Veerle Vandeweerd, New York, USA - Peter F. Varadi, Chevy Chase, USA - Maria Wall, Lund, Sweden - Martin Wietschel, Karlsruhe, Germany - Sheldon S. Williamson, Montreal, Canada - Wolfgang Winkler, Hamburg, Germany - Ramon Wyss, Stockholm, Sweden - Jinyue Yan, Royal Stockholm, Sweden - Laurence T. Yang, Antigonish, Canada - Guillermo Zaragoza, Almería, Spain - Tim S. Zhao, Hong Kong

Learn more…

Subject Categories

BISAC Subject Codes/Headings:
NAT011000
NATURE / Environmental Conservation & Protection
TEC009070
TECHNOLOGY & ENGINEERING / Mechanical
TEC010000
TECHNOLOGY & ENGINEERING / Environmental / General