Handbook of Scaling Methods in Aquatic Ecology: Measurement, Analysis, Simulation, 1st Edition (Paperback) book cover

Handbook of Scaling Methods in Aquatic Ecology

Measurement, Analysis, Simulation, 1st Edition

Edited by Laurent Seuront, Peter G. Strutton

CRC Press

624 pages

Purchasing Options:$ = USD
New in Paperback: 9780367394981
pub: 2019-12-20
SAVE ~$14.99
Available for pre-order. Item will ship after 20th December 2019
Hardback: 9780849313448
pub: 2003-09-25
SAVE ~$43.00
eBook (VitalSource) : 9780429205514
pub: 2003-09-25
from $28.98

FREE Standard Shipping!


The evolution of observational instruments, simulation techniques, and computing power has given aquatic scientists a new understanding of biological and physical processes that span temporal and spatial scales. This has created a need for a single volume that addresses concepts of scale in a manner that builds bridges between experimentalists and theoreticians in aquatic ecology.

Handbook of Scaling Methods in Aquatic Ecology: Measurement, Analysis, Simulation is the first comprehensive compilation of modern scaling methods used in marine and freshwater ecological research. Written by leading researchers, it presents a systematic approach to dealing with space and time in aquatic ecology. This is a compendium that analyzes themes related to the response or behavior of organisms to processes occurring over multiple spatial and temporal scales.

This book covers: novel techniques for data collection, focusing on processes over a broad range of scales (from bacteria to ocean basins); newly-developed concepts and data analysis algorithms; and innovative computer models and simulations to mimic complex biological processes.

The Handbook serves as a reference volume for investigators seeking insight into new experimental approaches and data analysis, as well as the sensor design required for optimal sampling. Many of the algorithms and models provided are directly applicable to your experimental data. This comprehensive treatment of scaling methods and applications can help foster a unified understanding of subject matter among the modeling, experimental, and field research communities.

Table of Contents

Measurements. Analysis. Simulation.

About the Editors

Laurent Seuront, Peter G. Strutton

Subject Categories

BISAC Subject Codes/Headings:
SCIENCE / Environmental Science
SCIENCE / Life Sciences / Biology / Marine Biology
SCIENCE / Life Sciences / General