1st Edition

Introduction to the Physical Chemistry of Foods

ISBN 9781466511750
Published April 23, 2013 by CRC Press
224 Pages 56 B/W Illustrations

USD $120.00

Prices & shipping based on shipping country


Book Description

Introduction to the Physical Chemistry of Foods provides an easy-to-understand text that encompasses the basic principles of physical chemistry and their relationship to foods and their processing. Based on the author’s years of teaching and research experience in the physical chemistry of food, this book offers the necessary depth of information and mathematical bases presented in a clear manner for individuals with minimal physical chemistry background.

The text begins with basic physical chemistry concepts, building a foundation of knowledge so readers can then grasp the physical chemistry of food, including processes such as crystallization, melting, distillation, blanching, and homogenization as well as rheology and emulsion and foam stability. The chapters cover thermodynamic systems, temperature, and ideal gases versus real gases; chemical thermodynamics and the behavior of liquids and solids, along with phase transitions; and the thermodynamics of small molecule and macromolecule dispersions and solutions.

The text describes surface activity, interfaces, and adsorption of molecules. Attention is paid to surface active materials, with a focus on self-assembled and colloidal structures. Emulsions and foams are covered in a separate chapter. The book also introduces some of the main macroscopic manifestations of colloidal (and other) interactions in terms of rheology. Finally, the author describes chemical kinetics, including enzyme kinetics, which is vital to food science. This book provides a concise, readable account of the physical chemistry of foods, from basic thermodynamics to a range of applied topics, for students, scientists, and engineers with an interest in food science.

Table of Contents

The physical basis of chemistry
Thermodynamic systems
Deviations from ideal behavior: Compressibility

Chemical thermodynamics
A step beyond temperature
Phase transitions
Application of phase transitions: Melting, solidifying, and crystallization of fats
Chemical potential

The thermodynamics of solutions
From ideal gases to ideal solutions
Fractional distillation
Chemical equilibrium
Chemical equilibrium in solutions
Ideal solutions: The chemical potential approach
Depression of the freezing point and elevation of the boiling point
Osmotic pressure
Polarity and dipole moment
Real solutions: Activity and ionic strength
On pH: Acids, bases, and buffer solutions
Macromolecules in solution
Enter a polymer
Is it necessary to study macromolecules in food and biological systems in general?
Flory–Huggins theory of polymer solutions
Osmotic pressure of solutions of macromolecules
Concentrated polymer solutions
Phase separation

Surface activity
Surface tension
Interface tension
Geometry of the liquid surface: Capillary effects
Definition of the interface
Surface activity

Surface-active materials
What are they, and where are they found?
Hydrophilic-lipophilic balance (HLB), critical micelle concentration (cmc), and Krafft point
Deviations from the spherical micelle
The thermodynamics of self-assembly
Structures resulting from self-assembly
Phase diagrams
Self-assembly of macromolecules: The example of proteins

Emulsions and foams
Colloidal systems
Thermodynamic considerations
A brief guide to atom-scale interactions
Light scattering from colloids
Destabilization of emulsions and foams

Does everything flow?
Elastic behavior: Hooke’s law
Viscous behavior: Newtonian flow
Non-Newtonian flow
Complex rheological behaviors
How does a gel flow? (Viscoelasticity)
Methods for determining viscoelasticity

Elements of chemical kinetics
Diamonds are forever?
Concerning velocity
Reaction laws
Zero-order reactions
First-order reactions
Second- and higher-order reactions
Dependence of velocity on temperature
Biocatalysts: Enzymes
The kinetics of enzymic reactions

View More



Christos Ritzoulis studied chemistry at the Aristotle University of Thessaloniki, and food science (M.Sc. and Ph.D.) at the University of Leeds. He has worked as a postdoctoral researcher at the Department of Chemical Engineering of the Aristotle University of Thessaloniki, and as an analyst at the Hellenic States General Chemical Laboratories. Today, Christos is a senior lecturer of food chemistry at the Department of Food Technology at TEI Thessaloniki, where he teaches food chemistry and physical chemistry of foods.