Methods for Solving Inverse Problems in Mathematical Physics: 1st Edition (Hardback) book cover

Methods for Solving Inverse Problems in Mathematical Physics

1st Edition

By Global Express Ltd. Co., Aleksey I. Prilepko, Dmitry G. Orlovsky, Igor A. Vasin

CRC Press

744 pages

Purchasing Options:$ = USD
Hardback: 9780824719876
pub: 2000-03-21
SAVE ~$70.00
$350.00
$280.00
x
eBook (VitalSource) : 9780429182594
pub: 2000-03-21
from $175.00


FREE Standard Shipping!

Description

Developing an approach to the question of existence, uniqueness and stability of solutions, this work presents a systematic elaboration of the theory of inverse problems for all principal types of partial differential equations. It covers up-to-date methods of linear and nonlinear analysis, the theory of differential equations in Banach spaces, applications of functional analysis, and semigroup theory.

Reviews

"This book is of course addressed to researchers in inverse problems, but is highly recommend to researchers in direct problems for PDE's who are terrified by the 'bad properties' of inverse problems….The volume builds…a bridge between identification problems for PDE's and Functional Analysis - nowadays well-known to every researcher in PDE's."

---Zentralblatt fur Mathematik, 2000

Table of Contents

Inverse problems for equations of parabolic type; inverse problems for equations of hyperbolic type; inverse problems for equations of elliptic type; inverse problems in dynamics of viscous incompressible fluid; some topics from functional analysis and operator theory; abstract inverse problems for first order equations and their applications in mathematical physics; two-point inverse problems for first order equations; inverse problems for equations of second order; applications of the theory of abstract inverse problems to partial differential equations; concluding remarks.

About the Series

Chapman & Hall/CRC Pure and Applied Mathematics

Learn more…

Subject Categories

BISAC Subject Codes/Headings:
MAT037000
MATHEMATICS / Functional Analysis