2nd Edition

Modern Land Drainage Planning, Design and Management of Agricultural Drainage Systems

    502 Pages
    by CRC Press

    502 Pages
    by CRC Press

    Modern Land Drainage 2nd edition is a fully revised and updated edition of the 2004 edition. Modern Land Drainage describes traditional drainage formulas (Hooghoudt, Kirkham, Donnan, Ernst, Glover-Dumm) for rainfed agriculture in the humid temperature zone. Significant parts are devoted to drainage for salinity control of irrigated land in (semi-) arid zones, and to drainage of rice land in the humid tropics. Institutional, management and maintenance aspects are extensively covered, as well as the mitigation of adverse impacts of drainage interventions on the environment. The latest computer applications for drainage design in the context of integrated water management are described (DRAINMOD, HEC, SWAP, etc.). Field surveys are executed by governments, with the aid of consultants, but rarely are the end stakeholders (i.e., farmers and general public) involved from inception to planning to execution of a drainage system. Yet, during the Operation, Management and Maintenance (OMM) phase of a water management system, they are expected to takeover, run, bear and be responsible for the costs of OMM. The book describes successful methodologies and processes to be followed for engagement of stakeholders at all levels, from government to farm, from minister to farmer, and, from beginning to end. The book covers all aspects needed for sustainable drainage. The latest survey methodologies with satellites and drones are suggested to assess cause and effect. Waterlogging and salinity are the effect of something caused most likely upstream of the drainage problem location. Hence treating the cause may be more cost-effective. Triple Bottom Line (social, environmental and financial considerations) and the water-food-energy nexus are an integral part of the drainage design process. Controlled drainage, i.e. the balance of removal and conservation of drainage water and minimising solute transport as low as reasonably achievable (ALARA principle) is extensively described. This work is intended for use both as a university level textbook and as a professional handbook; it is of particular value to professionals engaged in drainage development in the context of integrated water resources and river basin management, civil and agricultural engineers, government officials, university students and libraries.

    PART I INTRODUCTION 
    1 LAND DRAINAGE FOR AGRICULTURE 
    1.1 Drainage Objectives; Scope of the Book 
    1.2 Global Drainage Zones
    1.2.1 Temperate zone 
    1.2.2 Arid and semiarid zone 
    1.2.3 Humid and semi-humid zone 
    1.3 Agro-Hydrological Regimes
    1.4 Waterlogging Control 
    1.4.1 Positive and adverse impacts 
    1.4.2 Responses to improved drainage 
    1.5 Salinity Control 
    1.6 Drainage Systems 
    1.7 Bio-Drainage 
    1.8 Environmental Impacts 
    1.8.1 Stream flow regimes
    1.8.2 Water quality
    1.8.3 Wetlands and conservation drainage
    1.8.4 Public health 
    1.9 Drainage Development Considerations 

    2 PLANNING AND DESIGN CONSIDERATIONS 
    2.1 Design rainfall 
    2.2 Percolation of excess irrigation water 
    2.3 Design of field drainage systems 
    2.4 Determination of design criteria 

    3 REMOTE SENSING AND FIELD RECONNAISSANCE 
    3.1 Need for drainage and problem diagnosis 
    3.2 Remote sensing and aerial survey 
    3.3 Field investigations 
    3.4 Planning stakeholder engagement 
    3.5 Stages of project preparation 
    3.6 Operation, management and maintenance 

    4 ASSESSMENT OF COSTS 
    4.1 Required Information 
    4.2 Discounting 
    4.3 Evaluation Indices 
    4.4 Cost Evaluation of Open and Pipe Drainage Systems incl. O&M 
    4.5 Cost Calculations for Pipe Drainage Systems 
    4.5.1 Cost structure for pipe drainage construction 
    4.5.2 Guidelines for cost calculations 
    4.5.3 Example cost calculation 

    PART II INVESTIGATIONS 
    5 CLIMATE, LAND, SOIL AND ENVIRONMENT 
    5.1 Climate 
    5.1.1 Climate; soil moisture balance calculations 
    5.1.2 Climate: rainfall depth-duration-frequency studies 
    5.2 Topography 
    5.3 Soil and Land Conditions 
    5.4 Soil Parameters and Properties 
    5.4.1 Texture 
    5.4.2 Plasticity index 
    5.4.3 Bulk density and soil moisture content 
    5.4.4 Sample quantity and density 
    5.4.5 Data requirement for drain envelope design 
    5.5 Watertable and Groundwater 
    5.5.1 Watertable observation wells 
    5.5.2 Piezometric studies 
    5.5.3 Groundwater sampling 
    5.6 Hydrology and Geohydrology 
    5.6.1 Runoff and flooding 
    5.6.2 Outlet conditions 
    5.6.3 Geohydrological conditions 
    5.7 Agriculture and Irrigation 
    5.8 Pilot Areas and Field Testing 
    5.8.1 Types of pilot areas 
    5.8.2 Analysis of results of pilot areas 
    5.8.3 Visual drainage need assessment 
    5.8.4 Statistical analysis 
    5.9 Environmental Impact 
    5.9.1 Environmental impact assessment 
    5.9.2 Miscellaneous investigations 

    6 WATER IN THE SOIL 
    6.1 Forms and Nature of Occurrence of Water in the Soil 
    6.2 Pressures in the Soil Water 
    6.3 Soil Moisture Characteristics 
    6.4 Soil Water Potential and Soil Water Movement 
    6.5 Unsaturated Zone; Soil Moisture Constants 
    6.6 Infiltration and Percolation 
    6.7 Groundwater Flow; Laplace Equation 

    7 HYDRAULIC CONDUCTIVITY 
    7.1 Laboratory Measurement 
    7.2 Field Measurements below the Watertable 
    7.2.1 Augerhole method 
    7.2.2 Piezometer method 
    7.2.3 Drain outflow method 
    7.3 Field Measurements above the Watertable 
    7.3.1 Infiltrometer-method 
    7.3.2 Inverted augerhole method (Porchet method) 
    7.4 Composed K-Values 
    7.5 Surveys and Data Processing 

    PART III SYSTEMS AND TECHNOLOGY 
    8 SUBSURFACE DRAINAGE SYSTEMS 
    8.1 Pipe Drain Systems 
    8.2 Deep Ditch Systems 
    8.3 Drainpipes 
    8.4 Envelopes 
    8.4.1 Envelope need 
    8.4.2 Material selection 
    8.4.3 Envelope thickness 
    8.5 Envelope Design Guidelines and Criteria 
    8.5.1 Granular envelopes 
    8.5.2 Organic envelopes 
    8.5.3 Synthetic envelopes 
    8.6 Structures in Pipe Drain Systems 
    8.6.1 Surface water inlets 
    8.6.2 Inspection, junctions and control 
    8.6.3 Crossings 
    8.6.4 Outlet of a pipe drain into a ditch or canal 
    8.6.5 Sump outlet 
    8.7 Construction of Pipe Drain Systems 
    8.7.1 Setting out, depth and grade control 
    8.7.2 Installation methods and machinery 
    8.7.3 Construction and quality control 
    8.7.4 Timing of installation 
    8.7.5 Installation below the watertable 
    8.7.6 Backfill 

    9 SURFACE/SHALLOW DRAINAGE SYSTEMS 
    9.1 Bedding Systems 
    9.2 Shallow Ditch Systems 
    9.2.1 Types of shallow ditch systems 
    9.2.2 Some technical aspects of shallow ditch systems 
    9.3 Mole Drainage Systems 
    9.4 Pipe Drainage Systems 
    9.5 Complementary Measures 
    9.5.1 Sub-soiling 
    9.5.2 Deep ploughing 
    9.5.3 Chemical amendments and organic matter 
    9.5.4 Land levelling 

    10 MAIN DRAINAGE SYSTEMS 
    10.1 Main Features 
    10.1.1 Drainage basin (watershed, catchment) 
    10.1.2 Types and alignment of drainage canals 
    10.1.3 Outlet and water levels 
    10.1.4 Outlet Structures 
    10.2 Lowland and Upland Drainage 
    10.2.1 Lowland polder 
    10.2.2 River polders 
    10.2.3 Upland discharges 
    10.2.4 Drainage of urban areas 

    PART IV DESIGN 
    11 DESIGN OF PIPE DRAINAGE SYSTEMS 
    11.1 Flow Patterns 
    11.2 Drain Spacing Formulae 
    11.3 Hooghoudt Formula 
    11.3.1 Use of the Hooghoudt formula 
    11.3.2 Notes on the Hooghoudt formula 
    11.3.3 Drain spacing determination in anisotropic soils 
    11.4 Non-Steady State Drainage Formulae 
    11.4.1 Falling watertable (Glover-Dumm formula) 
    11.4.2 Fluctuating watertable (de Zeeuw and Hellinga formula) 
    11.5 Basic Design Criteria 
    11.5.1 Criteria for off-season drainage 
    11.5.2 Criteria for crop-season drainage 
    11.5.3 The impact of drain depth and drainable pore space 
    11.5.4 Drainage criteria determined by simulation 
    11.6 Drain Depth 
    11.7 Pipe Diameter 

    12 DESIGN DISCHARGES 
    12.1 Discharge Transformation 
    12.2 Design Considerations 
    12.3 Statistical Analysis of Observed Discharges 
    12.4 Flat basins 
    12.4.1 Subsurface drainage 
    12.4.2 Shallow drainage 
    12.4.3 Further guidance for flat basins 
    12.5 Sloping Basins 
    12.5.1 Rational formula 
    12.5.2 Curve Number method 
    12.5.3 Synthetic hydrographs 
    12.6 Area Reduction Formulae 
    12.7 Discharge Reduction through Storage 
    12.7.1 Retention reservoirs 
    12.7.2 Canal storage 

    13 DESIGN OF DRAINAGE CANALS, PUMPS AND STRUCTURES 
    13.1 Drainage Canals 
    13.1.1 Discharge rate 
    13.1.2 Hydraulic gradient and water levels 
    13.1.3 Permissible flow velocities 
    13.1.4 Cross-section 
    13.1.5 Roughness coefficient 
    13.1.6 Freeboard 
    13.2 Structures in Drainage Canals 
    13.2.1 Culverts and bridges 
    13.2.2 Weirs 
    13.2.3 Backwater curves 
    13.2.4 Example Canal Design 
    13.3 Tidal Outlets 
    13.3.1 Local variations in tide 
    13.3.2 Discharge through a sluice 
    13.3.3 Example of calculations 
    13.4 Pumps 
    13.4.1 Types of pumps 
    13.4.2 Pumping head and characteristics 
    13.4.3 Pump selection 
    13.4.4 Sump and intake design 
    13.4.5 Power and cost calculations 
    13.4.6 Example cost calculations of an electrically driven pump 

    PART V SALINITY CONTROL 
    14 SOIL SALINITY 
    14.1 Forms of Occurrence and Distribution of Salts in the Soil 
    14.1.1 The soil solution 
    14.1.2 Adsorbed cations 
    14.1.3 Equilibrium relationships 
    14.1.4 Distribution of salts in the soil 
    14.2 Agricultural Impacts; Diagnosis and Assessment 
    14.2.1 Osmotic problems 
    14.2.2 Toxicity problems 
    14.2.3 Dispersion problems 
    14.2.4 Corrosion problems 
    14.3 Classification 
    14.3.1 Classification systems 
    14.3.2 Field appearance 
    14.4 Conventional Mapping and Sampling 
    14.4.1 Sampling 
    14.4.2 Laboratory analysis 
    14.5 New Salinity Measurement and Mapping Techniques 
    14.5.1 The EM38 
    14.5.2 Time Domain Reflectometry 
    14.5.3 Remote sensing methods 

    15 IRRIGATION INDUCED SALINISATION 
    15.1 Salinisation by the Applied Irrigation Water 
    15.2 Salinisation from the Groundwater (Capillary Salinisation) 
    15.2.1 Critical watertable depth 
    15.2.2 Factors influencing capillary salinisation 
    15.3 Sodification 
    15.4 Salt Balance of Irrigated Land 
    15.4.1 Leaching requirement calculations 
    15.4.2 Regional salt balances 
    15.5 Irrigation Water Quality 
    15.5.1 Salinity hazard 
    15.5.2 Sodicity hazard 
    15.5.3 Toxicity hazards 
    15.5.4 Examples of irrigation water quality appraisal 

    16 DRAINAGE OF IRRIGATED LAND 
    16.1 Waterlogging and Salinity 
    16.2 Surface Drainage 
    16.3 Pipe Drainage Systems 
    16.3.1 Drain depth 
    16.3.2 Design criteria 
    16.3.3 Layout patterns 
    16.3.4 Pipe diameter 
    16.4 Well or Vertical Drainage 
    16.4.1 Types of aquifers 
    16.4.2 Design of well (vertical) drainage 
    16.5 Main Drainage 
    16.5.1 Design discharge 
    16.5.2 Disposal of saline drainage water 

    PART VI SPECIAL TOPICS 
    17 SEEPAGE AND INTERCEPTION 
    17.1 Drainage Systems for Sloping Land 
    17.1.1 Longitudinal drainage 
    17.1.2 Transverse drainage 
    17.2 Interception 
    17.2.1 Interception of seepage down the slope 
    17.2.2 Interception of Canal Seepage 
    17.3 Natural Drainage of River Valleys 
    17.4 Seepage into a Polder 
    17.4.1 Semi-confined flow 
    17.4.2 Phreatic flow 
    17.5 Seep Zones and Springs 

    18 RECLAMATION AND DRAINAGE OF UNRIPENED SOILS 
    18.1 The Soil Ripening Processes 
    18.1.1 Physical ripening 
    18.1.2 Other ripening processes 
    18.2 Reclamation and Drainage Methods 
    18.2.1 Early reclamation stage 
    18.2.2 Development of the hydraulic conductivity (K-value) 
    18.2.3 Advanced reclamation stage 
    18.2.4 Drainage, evaporation and ripening 
    18.3 Acid Sulphate Soils 
    18.3.1 Acidification processes 
    18.3.2 Neutralisation and reclamation 
    18.3.3 Diagnosis 
    18.4 Subsidence Prediction 
    18.4.1 Ripening subsidence 
    18.4.2 Settlement subsidence due to lowering of the watertable 
    18.4.3 Oxidation of peat soils 
    18.4.4 Experiences in the Netherlands 

    19 DRAINAGE OF RICE LANDS 
    19.1 Surface Drainage 
    19.2 Subsurface Drainage 
    19.3 Crop Diversification 
    19.4 Flood Control 

    20 CONTROLLED DRAINAGE 
    20.1 Issues and Developments 
    20.2 Design Considerations 
    20.2.1 Layout and technical provisions 
    20.2.2 Drain depth 
    20.2.3 Reuse arrangements 
    20.2.4 Discharge control and watertable management 
    20.3 Operation and Maintenance by Farmers 
    20.4 Controlled Drainage at the Regional Level 

    21 COMPUTER APPLICATIONS 
    21.1 Drainage Design Applications 
    21.1.1 Field systems 
    21.1.2 Canal systems 
    21.1.3 Preparation of drawings and documents 
    21.2 Rainfall Discharge Models 
    21.2.1 TR-20 model 
    21.2.2 HEC-HMS 
    21.3 Ground Water Flow Models 
    21.3.1 Spreadsheet models 
    21.3.2 MODFLOW and integrated programs 
    21.3.3 SGMP and SOURCE 
    21.4 Agrohydrological Models 
    21.4.1 DRAINMOD version 6 
    21.4.2 SWAP 
    21.5 Salinity Prediction Models 
    21.5.1 SALTMOD 
    21.5.2 WATSUIT 

    PART VII MANAGEMENT AND NEW DEVELOPMENTS 
    22 RESEARCH AND INNOVATION 
    22.1 Hydroluis Pipe-Envelope Drainage 
    22.2 Capiphone Drain 
    22.3 Precision Agriculture for Water Quality Control 
    22.4 Bi-level Subsurface Drainage 

    23 INSTITUTIONAL, ORGANISATIONAL AND FINANCIAL ARRANGEMENTS 
    23.1 Drainage Laws 
    23.2 Development and Management Models 
    23.2.1 Public/private good model 
    23.2.2 Participatory Development 
    23.2.3 Management Transfer 
    23.3 Public Drainage Organisation 
    23.4 Financing 
    23.4.1 Investments 
    23.4.2 Operation and Maintenance Costs 
    23.4.3 Fee Systems 

    24 MAINTENANCE 
    24.1 Classification 
    24.2 Organisation, Planning and Execution 
    24.3 Maintenance of Open Drainage Canals 
    24.3.1 Problems 
    24.3.2 Requirements 
    24.3.3 Methods and Equipment 
    24.3.4 Environmental considerations 
    24.4 Maintenance of Pipe Drains 
    24.4.1 Pipe Cleaning 
    24.4.2 Entry of roots 
    24.4.3 Chemical clogging (iron ochre, gypsum) 
    24.4.4 Access facilities 
    24.4.5 Costs 
    24.5 Developing Countries 

    25 PERFORMANCE ASSESSMENT AND BENCHMARKING 
    25.1 Drainage Design and Performance 
    25.2 Indicators 
    25.3 Performance Assessment Procedure 
    25.3.1 Preliminary Investigations (first step) 
    25.3.2 Primary Investigation (second step) 
    25.3.3 Cause Analysis (third step) 
    25.4 Performance Checking of Pipe Systems 
    25.5 Causes of Under-Performance of Drainage Systems 

    REFERENCES AND FURTHER READING 
    INDEX  
    ABOUT THE AUTHORS 

    Biography

    Willem F. Vlotman worked with Dutch and American consultants on agricultural drainage, urban drainage and irrigation projects in the Netherlands, the West Indies and Asia. In 1988, he joined the International Institute for Land Reclamation and Improvement (ILRI) and has worked for this organisation in Pakistan, Egypt and the Netherlands. In 2004 he immigrated to Australia and worked with the Murray-Darling Basin Authority until retirement in 2017. Willem Vlotman was chairman of the Working Group on Drainage of the international Commission on Irrigation and Drainage (ICID) from 1995-2013. Lambert K. Smedema worked most of his career for Euroconsult on irrigation in Africa and South America and on drainage in the Middle East and Asia. He was a lecturer/researcher at the University of Nairobi and at the Delft University of Technology. During the nineties, he worked as a consultant with the World Bank and with the Food and Agriculture Organization of the United Nations. Lambert Smedema is currently working as an independent consultant. David W. Rycroft began his professional career working for the UK Ministry of Agriculture at their Field Drainage Experimental Unit based in Cambridge. He subsequently joined consultants Sir M MacDonald and Partners and worked as a salinity control and land drainage specialist on large projects in Iraq, Somalia and Egypt. In 1979, David Rycroft joined the Institute of Irrigation Studies (Southampton University) to teach in combination with his overseas consultancy work.