1st Edition

Molecular Dynamics of Nanostructures and Nanoionics
Simulations in Complex Systems

  • Available for pre-order. Item will ship after December 1, 2020
ISBN 9789814800778
December 1, 2020 Forthcoming by Jenny Stanford Publishing
338 Pages 56 Color & 45 B/W Illustrations

USD $179.95

Prices & shipping based on shipping country


Book Description

Nanostructured materials with multiple components and complex structures are the current focus of research and are expected to develop further for material designs in many applications in electrochemical, colloidal, medical, pharmaceutical, and several other fields. This book discusses complex nanostructured systems exemplified by nanoporous silicates, spontaneously formed gels from silica-nanocolloidal solutions, and related systems, and examines them using molecular dynamics simulations. Nanoporous materials, nanocolloidal systems, and gels are useful in many applications and can be used in electric devices and storage, and for gas, ion, and drug delivery. The book gives an overview of the history, current status, and frontiers of the field. It also discusses the fundamental aspects related to the common behaviors of some of these systems and common analytical methods to treat them.

Table of Contents

1. Introduction to Molecular Dynamics Simulations of Complex Systems  2. Classification of Nanostructured Materials and Effects of Nano-Sizing  3. Nanostructures in Nanoionics and Colloidal Chemistry: Overview and Problems  4. Fundamentals of Molecular Dynamics (MD) Simulations and Tools for Examining Nanostructured Materials  5. Molecular Dynamics Simulations of Ionic Motions: Dynamic Heterogeneity as a Basis of Studies of Nanostructured Materials 6. Molecular Dynamics Simulations of Nanoporous Systems: Mechanism of Enhanced Dynamics of Ions  7. Molecular Dynamics Simulations of Nanoporous Systems: Dynamic heterogeneity, Self-organization of Voids and Self-healing Processes  8. Full Atomistic Simulations of Nanocolloidal Solutions: Formations of Clusters, Aggregates and Gels 9. Nanostructures of Aggregates and Gels Formed by Fully Atomistic Molecular Dynamics Simulations

View More



Junko Habasaki is senior scientist II at Schrödinger K.K., Japan. She graduated in chemistry from Tokyo University of Education, Japan, in 1977 and obtained her PhD in chemistry from Tokyo Metropolitan University in 1984. She was an assistant professor at Tokyo Institute of Technology and an invited professor of physics at Université de Lille 1, France (2007–2008). Dr. Habasaki retired from the Tokyo Institute of Technology in March 2020. Her research focuses on the dynamics and structures of glasses, ionic liquids, and related systems using molecular dynamics simulations. She is a coauthor of the award-winning book Dynamics of Glassy, Crystalline and Liquid Ionic Conductors and also a technical committee member of the International Commission on Glass, TC27: Atomistic Simulation.