Molecular Dynamics of Nanostructures and Nanoionics: 1st Edition (Hardback) book cover

Molecular Dynamics of Nanostructures and Nanoionics

1st Edition

By Junko Habasaki

Jenny Stanford Publishing

400 pages

Purchasing Options:$ = USD
Hardback: 9789814800778
pub: 2020-03-31
SAVE ~$35.99
Available for pre-order. Item will ship after 31st March 2020
$179.95
$143.96
x


FREE Standard Shipping!

Description

Nanostructured materials with multiple components and complex structures are the current focus of research and are expected to develop further for material designs in many applications in electrochemical, colloidal, medical, pharmaceutical, and several other fields. This book discusses complex nanostructured systems exemplified by nanoporous silicates, spontaneously formed gels from silica-nanocolloidal solutions, and related systems and examines them using molecular dynamics simulations. Nanoporous materials, nanocolloidal systems, and gels are useful in many applications and can be used in electric devices and storage and for gas, ion, and drug delivery. The book gives an overview of the history, current status, and frontiers of the field. It also discusses the fundamental aspects related to the common behaviors of some of these systems and common analytical methods to treat them.

Nanostructured materials have unique properties and these characteristics tend to be explained by the large surface areas or properties of boundaries. However, there are many examples that cannot be explained by these factors only.

Table of Contents

1. Introduction to Molecular Dynamics Simulations of Complex Systems 2. Classification of Nanostructured Materials and Effects of Nano-Sizing 3. Nanostructures in Nanoionics and Colloidal Chemistry: Overview and Problems 4. Fundamentals of Molecular Dynamics (MD) Simulations and Tools for Examining Nanostructured Materials 5. Molecular Dynamics Simulations of Ionic Motions: Dynamic Heterogeneity as a Basis of Studies of Nanostructured Materials 6. Molecular Dynamics Simulations of Nanoporous Systems: Mechanism of Enhanced Dynamics of Ions 7. Molecular Dynamics Simulations of Nanoporous Systems: Dynamic heterogeneity, Self-organization of Voids and Self-healing Processes 8. Full Atomistic Simulations of Nanocolloidal Solutions: Formations of Clusters, Aggregates and Gels 9. Nanostructures of Aggregates and Gels Formed by Fully Atomistic Molecular Dynamics Simulations

About the Author

Junko Habasaki is professor at Tokyo Institute of Technology, Japan.

Subject Categories

BISAC Subject Codes/Headings:
MED009000
MEDICAL / Biotechnology
SCI050000
SCIENCE / Nanostructures
SCI086000
SCIENCE / Life Sciences / General
TEC021000
TECHNOLOGY & ENGINEERING / Material Science
TEC059000
TECHNOLOGY & ENGINEERING / Biomedical