Moving Shape Analysis and Control: Applications to Fluid Structure Interactions, 1st Edition (Hardback) book cover

Moving Shape Analysis and Control

Applications to Fluid Structure Interactions, 1st Edition

By Marwan Moubachir, Jean-Paul Zolesio

Chapman and Hall/CRC

312 pages

Purchasing Options:$ = USD
Paperback: 9780367391287
pub: 2019-08-30
SAVE ~$14.99
Available for pre-order
$74.95
$59.96
x
Hardback: 9781584886112
pub: 2006-01-13
SAVE ~$34.00
Currently out of stock
$170.00
$136.00
x
eBook (VitalSource) : 9780429146091
pub: 2006-01-13
from $28.98


FREE Standard Shipping!

Description

Problems involving the evolution of two- and three-dimensional domains arise in many areas of science and engineering. Emphasizing an Eulerian approach, Moving Shape Analysis and Control: Applications to Fluid Structure Interactions presents valuable tools for the mathematical analysis of evolving domains.

The book illustrates the efficiency of the tools presented through different examples connected to the analysis of noncylindrical partial differential equations (PDEs), such as Navier–Stokes equations for incompressible fluids in moving domains. The authors first provide all of the details of existence and uniqueness of the flow in both strong and weak cases. After establishing several important principles and methods, they devote several chapters to demonstrating Eulerian evolution and derivation tools for the control of systems involving fluids and solids. The book concludes with the boundary control of fluid–structure interaction systems, followed by helpful appendices that review some of the advanced mathematics used throughout the text.

This authoritative resource supplies the computational tools needed to optimize PDEs and investigate the control of complex systems involving a moving boundary.

Table of Contents

Introduction. An Introductory Example: The Inverse Stefan Problem. Weak Evolution of Sets and Tube Derivatives. Shape Differential Equation and Level Set Formulation. Dynamical Shape Control of the Navier–Stokes Equations. Tube Derivative in a Lagrangian Setting. Sensitivity Analysis for a Simple Fluid–Solid Interaction System. Sensitivity Analysis for a General Fluid–Structure Interaction System. Appendix A: Functional Spaces and Regularity of Domains. Appendix B: Distribution Spaces. Appendix C: The Fourier Transform. Appendix D: Sobolev Spaces. References. Index.

About the Authors

Moubachir, Marwan; Zolesio, Jean-Paul

Subject Categories

BISAC Subject Codes/Headings:
MAT000000
MATHEMATICS / General
MAT003000
MATHEMATICS / Applied