Plant Nutritional Genomics: 1st Edition (Hardback) book cover

Plant Nutritional Genomics

1st Edition

Edited by Martin R. Broadley, Philip J. White


321 pages

Purchasing Options:$ = USD
Hardback: 9780849323621
pub: 2005-03-08
SAVE ~$43.00
Currently out of stock

FREE Standard Shipping!


A 'textbook' plant typically comprises about 85% water and 13.5% carbohydrates. The remaining fraction contains at least 14 mineral elements, without which plants would be unable to complete their life cycles.

Understanding plant nutrition and applying this knowledge is essential to increasing crop production to meet growing demands for food. Genotypic approaches, based on crop selection and / or breeding have recently begun to benefit from technological advances, including the completion of plant genome sequencing projects.

Plant Nutritional Genomics provides a timely overview of plant nutritional genomics, which is defined as the interaction between a plant's genome and its nutritional characteristics. Optimising mineral nutrition during crop production is vital to the development of healthy and nutritional pest and disease resistant crops without relying on chemical input. The judicious selection and breeding of fit-for-purpose varieties of crops will play a huge role in meeting these objectives, and advances in plant nutritional genomics will allow the full potential of crop selection and breeding strategies to be realized.

Table of Contents

1. Nitrogen

Françoise Daniel-Vedele and Sylvain Chaillou, Plant Nitrogen Nutrition Unit, INRA Versailles, Frances

2. Potassium

Sabine Zimmermann and Isabelle Chérel, INRA - Biochimie et Physiologie Moléculaire des Plantes, Montpellier, France

3. Calcium

Philip J. White, Horticulture Research International, Wellesbourne, Warwick, UK

4. Sulphur

Malcolm J. Hawkesford, Agriculture and the Environment Division, Rothamsted Research, Harpenden, UK

5. Phosphorus

Kashchandra G. Raghothama, Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, USA

6. Sodium

Huazhong Shi, Ray A. Bressan, Paul M. Hasegawa and Jian-Kang Zhu, Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, USA

7. Mapping links between the genome and ionome in plants

Brett Lahner and David E. Salt, Department of Horticulture and Landscape Architechture, Purdue University, West Lafayette, Indiana, USA

8. Transcriptional profiling of membrane transporters

Frans J.M. Maathuis, Department of Biology, University of York, UK and Anna Amtmann, Laboratory of Plant Physiology and Biophysics, University of Glasgow, UK

9. Exploring natural genetic variation to improve plant nutrient content

Dick Vreugdenhil , Mark G.M. Aarts and Maarten Koornneef, Laboratory of Genetics, Wageningen University, The Netherlands

10. Mapping nutritional traits in crop plants

Matthias Wissuwa, International Rice Research Institute, Manila, The Philippines

11. Sustainable crop nutrition: constraints and opportunities

R. Ford Denison and E. Toby Kiers, Agronomy & Range Science Department, University of California, Davis, USA

12. Methods to improve the crop-delivery of minerals to humans and livestock

Michael A. Grusak, Baylor College of Medicine, Houston, Texas, USA and Ismail Cakmak, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey

13. Using plants to manage sites contaminated with heavy metals

Steven N. Whiting, School of Botany, University of Melbourne, Australia, Roger D. Reeves, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand, David Richards, Rio Tinto Plc, London, UK et al.



Subject Categories

BISAC Subject Codes/Headings:
SCIENCE / Life Sciences / Botany