Sedimentation Velocity Analytical Ultracentrifugation: Interacting Systems, 1st Edition (Hardback) book cover

Sedimentation Velocity Analytical Ultracentrifugation

Interacting Systems, 1st Edition

By Peter Schuck, Huaying Zhao

CRC Press

271 pages | 81 Color Illus.

Purchasing Options:$ = USD
Hardback: 9781138035287
pub: 2017-09-21
eBook (VitalSource) : 9781315268705
pub: 2017-09-22
from $28.98

FREE Standard Shipping!


Analytical ultracentrifugation is one of the most powerful solution techniques for the study of macromolecular interactions, to define the number and stoichiometry of complexes formed, and to measure affinities ranging from very strong to very weak and repulsive.

Building on the data analysis tools described in the volume Sedimentation Velocity Analytical Ultracentrifugation: Discrete Species and Size-Distributions of Macromolecules and Particles, and the experimental and instrumental aspects in the first volume Basic Principles of Analytical Ultracentrifugation, the present volume Sedimentation Velocity Analytical Ultracentrifugation: Interacting Systems is devoted to the theory and practical data analysis of dynamically coupled sedimentation processes.

This volume is designed to fill a gap in biophysical methodology to provide a framework that builds on the fundamentals of the highly developed traditional methods of analytical ultracentrifugation, updated with current methodology and from a viewpoint of modern applications. It will be an invaluable resource for researchers and graduate students interested in the application of analytical ultracentrifugation in the study of interacting systems, such as biological macromolecules, multi-protein complexes, polymers, or nanoparticles.


"Sedimentation Velocity Analytical Ultracentrifugation: Interacting Systems should be considered essential reading for those interested in the quantitative analysis of macromolecular interactions. The book lays out the fundamental theory of sedimentation for interacting systems, along with numerous examples that allow a visual and conceptual connection to the underlying math. This is followed with a discussion of approximate solutions of the Lamm equation for reacting systems, and analysis of the resultant sedimentation coefficient distributions. Of particular note is the chapter on practical considerations for experimental design and data interpretation, which should prove useful to experts and non-experts alike.

In light of the importance of interacting systems in both academic and industry settings, this book represents a timely and useful reference."

David L Bain, Professor, University of Colorado Anschutz Medical Campus

"After laying down the fundamentals of analytical centrifugation in his first book, and the basis of sedimentation analysis of multicomponent systems in the second one, the third book in the series deals with the most crucial aspects, present in every practical case, arising from physical and chemical interactions between the different species in the sample.

Dr. Schuck presents a detailed description of the nature of the interactions, their influence in the sedimentation patterns, and the ways to account for them in the analysis of experimental data. The author considers, on the one hand, physical intramolecular interactions, showing how they must be properly considered when one looks for structural information of the individual species. And, on the other hand, the book dwells amply in the most significant case of chemically reacting systems. The homo- or hetero-association of biomacromolecules is an aspect of extraordinary importance in many topics in life sciences, from signalling processes in systems biology, to problems about protein aggregation in neuroscience or pharmacology. The book provides conceptual information, as well as practical guidance on the extraction of information about such interactions by means of the excellent, public-domain computer tools that Dr Schuck has developed and made available."

José García de la Torre, Professor of Physical Chemisty, University of Murcia

"This book is a must-read for scientists investigating interacting systems by sedimentation velocity analytical ultracentrifugation. It comprehensively describes the phenomenology of sedimentation of self-associating and hetero-associating systems showing slow or fast kinetics, and presents in mathematical detail several approximate and exact solutions for data evaluation. Not only for unexperienced users, the chapter ‘Practical Analysis of Interacting Systems’ is particularly helpful, since all considerations necessary for experimental design up to quantitative analysis of the experimental data are described thoroughly.

It is especially valuable that a multitude of examples throughout the book illustrate how reaction kinetics, concentrations and non-ideality will influence the results. This helps to plan actual experiments and to avoid misinterpretation of the data. Most notably reactions that are fast on the time-scale of sedimentation show properties that can be misleading and may appear counter-intuitive to the unexperienced experimenter. Here these processes are very well described, illustrated by cartoons and their impact on the sedimentation behavior of the system is explained. This book superbly summarizes the present state of the art of sedimentation velocity analysis on interacting systems and saves the investigator to read through piles of research papers on this subject."

Professor Ute Curth, Hannover Medical School

Table of Contents

Exact Description of Ideally Sedimenting Associating Systems

Phenomenology of Sedimentation of Interacting Systems

Approximate Solutions for the Coupled Lamm Equations of Reacting Systems

Sedimentation Coefficient Distributions

Nonideal Sedimentation Velocity

Practical Analysis of Interacting Systems

Numerical Solution of Coupled Systems of Lamm Equations for Interacting Systems

Effective Particle Theory for Multi-Component Systems

About the Authors

Dr. Schuck obtained his Ph.D. from the Goethe-University Frankfurt am Main, Germany, where he worked on interactions of integral proteins of the erythrocyte membrane using analytical ultracentrifugation. He received his post-doctoral research training in physical biochemistry with Dr. Allen Minton at NIDDK, and joined the Bioengineering and Physical Science Program of NCRR as a Research Fellow in 1997. He is currently a Earl Stadtman Tenure-Track Investigator and Chief of the Dynamics of Macromoleular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics at the National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health.

Dr. Zhao received her Ph.D. in Chemistry, with a specialization in protein biochemistry, before spending two years on her post-doctoral research at the University of Maryland, where she worked on the study of protein-DNA and protein-protein interactions. Dr. Zhao joined the NIBIB as a Research Fellow in 2008. She has been working in the intramural research’s Laboratory of Cellular Imaging and Macromolecular Biophysics, Dynamics of Macromolecular Assembly Section on development of biophysical methodology for characterizing a variety of macromolecules, including proteins, nucleic acids, polymers and nanoparticles. Her current work has focused on applications of advanced techniques of biophysics and physical biochemistry, including sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation, isothermal titration calorimetry, fluorescence spectroscopy and surface plasmon resonance biosensing.

Subject Categories

BISAC Subject Codes/Headings:
MEDICAL / Biochemistry
MEDICAL / Pharmacology
SCIENCE / Physics