Statistics for Biological Networks : How to Infer Networks from Data book cover
1st Edition

Statistics for Biological Networks
How to Infer Networks from Data

  • Available for pre-order. Item will ship after April 18, 2022
ISBN 9781439841471
April 18, 2022 Forthcoming by Chapman and Hall/CRC
320 Pages 120 B/W Illustrations

USD $79.95

Prices & shipping based on shipping country


Book Description

An introduction to a new paradigm in social, technological, and scientific discourse, this book presents an overview of statistical methods for describing, modeling, and inferring biological networks using genomic and other types of data. It covers a large variety of modern statistical techniques, such as sparse graphical models, state space models, Boolean networks, and hidden Markov models. The authors address gene transcription data, microRNAs, ChIP-chip, and RNAi data. Along with end-of-chapter exercises, the text includes many real-world examples with implementations using a dedicated R package.

Table of Contents

From clusters to networks

Visualizing networks
Inferring network topology

Network evolution
Network parameters
Network identification
Adjacency matrices
Finding modules
Finding pathways
Finding (sub)networks
Static network models
Linear models
Graphical models
Boolean network models
Dynamic network models
Single cell dynamics
State space modeling
Dynamic graphical models
Differential equation models
Inference with networks
Networks as explanatory variables
Survival analysis

View More



An expert in the field of statistical bioinformatics, Ernst Wit is a professor of statistics and probability at the University of Groningen.

Veronica Vinciotti is a lecturer in statistics at Brunel University.

Vilda Purutcuoglu is an instructor in statistics at Middle East Technical University.