1st Edition

Wearable Solar Cell Systems

ISBN 9780367023478
Published December 2, 2019 by CRC Press
144 Pages 35 B/W Illustrations

USD $89.95

Prices & shipping based on shipping country


Book Description

Smartwatch? Fitness tracker? Portable ECG? Smartphone? Posture monitor? Hearing aid? MP3 player? E-reader? Wireless headset? Hiking watch? Gaming headset? Sleep monitor? Laptop computer? Tablet?

Indeed, a dizzying array of portable and wearable electronic devices is available to the modern consumer. Not surprisingly, as the number of devices an individual chooses to wear or carry increases so does the energy required to power those devices. Judging by the increasing popularity of portable power banks, waiting to recharge many of these devices using standard wall outlets is no longer a standard practice.

Wearable Solar Cell Systems looks at the possibilities for supporting the energy demand of these devices without the need to return to the dreaded wall outlet for recharging. While crystalline silicon dominates world markets, second- or third-generation solar cell technologies may be more suitable to wearable systems. Array size, architecture, and management must also be chosen to best serve portable and wearable devices and harvest light energy from different light sources under a broad range of input conditions.

This book is intended to serve a wide audience from students who desire a basic introduction to solar (photovoltaic) cell technology to professionals seeking a holistic picture of wearable solar cells and systems.

Table of Contents

Chapter 1: The Power of Light
1.1 Portable, Mobile, and Wearable Devices
1.2 Impacts of Wearable Solar Systems
1.3 Feasibility of Wearable Solar Cell Systems
1.4 Summary

Chapter 2: Fundamentals
2.1 Light
2.2 PV Materials
2.3 Conversion of Light to Electrical Energy
2.4 Advanced PV Designs
2.5 Performance of PV Cells
2.6 Shading and Other Irregularities
2.7 Summary

Chapter 3: First Generation Solar Cells
3.1 Monocrystalline Silicon
3.2 Polycrystalline Silicon
3.3 Amorphous Silicon
3.4 Summary

Chapter 4: Second Generation Solar Cells
4.1 Gallium Arsenide (GaAs)
4.2 Cadmium Telluride (CdTe)
4.3 Copper Indium Gallium Selenide (CIGS)
4.4 Summary

Chapter 5: Third Generation Solar Cells
5.1 Organic PV (OPV) Cells
5.2 Dye-Sensitized PV Cells
5.3 Perovskites
5.4 Quantum Dot PV Cells
5.5 Summary

Chapter 6: Arrays of PV Cells
6.1 Basic PV Array Design
6.2 Array Management
6.3 Maximum Power Point Tracking (MPPT)
6.4 Array Reconfiguration
6.5 Summary

Chapter 7: Energy Storage
7.1 DC-DC Conversion
7.2 Energy Storage
7.3 Summary

Chapter 8: Wearable and Portable Technology
8.1 Mobile Phones
8.2 Other Portables
8.3 Wearable Devices
8.4 Overall Energy Demand
8.5 Summary

Chapter 9: Wearable Solar Systems
9.1 Basic Performance
9.2 Flexibility, Cost, Toxicity, and Stability
9.3 Array Considerations
9.4 Charge Controller and Battery Considerations
9.5 Surface Area Considerations
9.6 Summary

View More



Denise Wilson is a professor in the Department of Electrical and Computer Engineering at the University of Washington in Seattle where she has worked since 1999. Previously, she held a similar position at the University of Kentucky in Lexington, Kentucky.

Denise is also founder and managing director of Coming Alongside, an environmental services non-profit organization whose mission is to make hazards posed by the environment to human and animal health visible and actionable.