CHAPTER 2
RANDOM VARIABLES, SEQUENCES AND

STOCHASTIC PROCESSES

For most situations signals are not repeatable in a particular manner. Radar signals reflected from the ground, communication signals propagating through the atmospheric channel, the engine noise in speech transmission from the cockpit of an airplane, speckles in images, etc. These types of signals are defined by probabilistic characterization, and are treated by the theory of probability and statistics.

2.1 Random Signals and Distributions

Random signals can be described by precise mathematical analysis whose tools are contained in the theory of statistical analysis. 
A discrete random signal {X(n)} is a sequence of indexed random variables (rv’s) assuming the values
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The random sequence with values {x(n)} is discrete with respect to sampling index n. In our case here we will assume that the random variable at any time n takes continuous values and, hence, it is a continuous random variable at any time n. This type of sequence is also known as time series. In case we study a continuous random signal, we will assume that we sample it at high enough rate so that we construct a time series that is free of aliasing (see Sect. 1.3). 
A particular rv continuous at time n, X(n), is characterized by its probability density function (pdf) f(x(n))
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and its cumulative density function (cdf) F(x(n))
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The expression 
[image: image4.wmf]{()()}

pXnxn

£

 is interpreted as the probability that the rv X(n) will take values less than or equal to x(n) at time n. As the value of the rv at time n approaches infinity, F(x(n)) approaches unity. 

Fig 2.1.1-a presents a time series indicating, for example, the thickness of a wire as it is measured at 30 instants of time during its production for quality assurance. Fig 2.1.1-b shows the histogram, that is an approximation to the pdf of the rv, which in this case is the thickness of the wire. For example, the number of times we observed that the width falls between 2 and 2.5 is 5. Finally Fig 2.1.1-c shows the cdf, where each step is proportional to the number of widths found within the range of width 0.5 divided by the total number of samples.

The empirical cdf of a rv given the values 
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This function is a histogram of stairway type and its value at x (here the width) is the percentage of the points 
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 that are not larger than x. 

Similarly, the empirical pdf can be found based by the relation 



[image: image8.wmf]µ

(){}/

fxpxXxxx

@<<+DD


for small 
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Similarly, the multivariate distributions are given by
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Note that here we have used a capital letter to indicate rv’s. In general, we shall not keep this notation since it will be obvious from the context. 
If, for example, we want to check the accuracy of reading a dial by a person, we will have two readings, one due to the person and another due to the instruments. A simultaneous plot of these two readings, each one associated with a different orthogonal axis, will produce a scattering diagram but with a linear dependence. The closer the points fall on a straight line the more reliable the person’s readings are. This example presets a case of a bivariate distribution. Fig 2.1.2-a shows a scatter plot of x(n)’s versus x(n-1)’s of the time series {x(n)}. Fig 2.1.2-b shows similar plot but for x(n)’s versus x(n-4). It is apparent that the x(n)’s and x(n-1)’s are more correlated (tend to be around a straight line) than the second case.
To obtain a formal definition of a discrete-time stochastic process, we consider an experiment with a finite or infinite number of unpredictable outcomes from a sample space, S(z1,z2, …), each one occurring with a probability p(zi). Next, by some rule we assign a deterministic sequence x(n,zi ), -∞<n<∞,to each element zi of the sample space. The sample space, the probabilities of each outcome and the sequences constitute a discrete-time stochastic process or random sequence. From this definition we obtain the following four interpretations;

· x(n,z) is a rv if n is fixed and z is variable

· x(n,z) is a sample sequence called realization if z is fixed and n is variable

· x(n,z) is a number if both n and z are fixed

· x(n,z) is a stochastic process if both n and z are variables

Each time we run an experiment under identical conditions, we create a sequence of rv’s {X(n)} which is known as a realization and constitutes an event. A realization is one member of a set called the ensemble of all possible results from the repetition of an experiment. Fig 2.1.3 shows a typical ensemble of realizations.

Book MATLAB m-File: realizations
%Book MATLAB m-file:realizations 
for n=1:4
    x(n,:)=rand(1,50)-0.5;%x=4x50 matrix with each row having
                         %zero mean;
end;
m=0:49;
for i=1:4
    subplot(4,1,i);stem(m,x(i,:),'k');%plots four rows of matrix x;
end;
xlabel('n');ylabel('x(n)')                
Fig 2.1.3 shows four realizations of a stochastic process with zero mean value. With only slight modifications of the above script file we can produce any number of realizations.
Stationary and Ergodic Processes
It is seldom in practice that we will be able to create an ensemble of a random process with numerous realizations so that we can find some of its statistical characteristics, e.g. mean value, variance etc. To find these statistical quantities we need the pdf of the process, which, most of the times, is not possible to produce. Therefore, we will restrict our studies to processes which are easy to study and easy to handle mathematically. 

The process, which produces an ensemble of realizations and whose statistical characteristics do not change with time, is called stationary. For example, the pdf of the rv’s x(n) and x(n+k) of the process {x(n)} are the same independently of the values of n and k.

Since we will be unable to produce ensemble averages in practice, we are left with only one realization of the stochastic process. To overcome this difficulty we assume that the process is ergodic. This characterization permits us to find the desired statistical characteristics of the process from only one realization at hand. We refer to those statistical values as sample mean, sample variance etc. This assumes that the ergoticity is applicable to those statistical characteristics as well.
2.2 Averages
Mean Value

The mean value or expectation value mx at time n of a random variable x(n) having pdf f(x(n)) is given by
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where E{∙} stands for expectation operator. We can also use the ensemble of realizations to obtain the mean value using the frequency interpretation formula


[image: image13.wmf]1

1

()lim()number of realizations

N

xi

N

i

mnxnN

N

®¥

=

ìü

==

å

íý

îþ


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (2.8)

where xi(n) is the ith outcome at sample index n (or time n) of the ith realization. Depending on the type of the rv, the mean value may or may not vary with time. 

For an ergodic process, we find the sample mean (estimator of the mean) using the time-average formula (see Prob 2.2.1)
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It must be pointed out that the estimate mean value above is a random variable depending on the number of terms of the sequence present. It turns out (see Prob 2.2.2) that the sample mean 
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 is equal to the population mean mx and, therefore, we call the sample mean an unbiased estimator.

Correlation

The cross-correlation between two random sequences is defined by
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where the integrals are from minus infinity to infinity. If x(n)=y(n), the correlation is known as the autocorrelation. Having an ensemble of realizations, the frequency interpretation of the autocorrelation function is found using the formula
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Note that we use one subscript for autocorrelation functions. In case we have cross-correlation we will use both subscripts. 

Example 2.2.1: Using Fig 2.1.3, find the mean for n=10 and the autocorrelation function for time difference of five: n=20 and n=25.

Solution: The desired values are
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Because the number of realizations is very small, both values found above are not as it was expected to be. However, their values are approximate what we were expected.











    ▄
Fig 2.2.1 shows the mean value at 50 individual times and the autocorrelation function for 50 differences (from zero to forty nine) known as lags. These results were found using the MALAB function given below. Note that, as the number of realizations increases, the mean tends to zero and the autocorrelation tends to a delta function, as it should be. In this case the random variables are independent, identically distributed (iid) and their pdf is Gaussian (white noise, see Sec 2.3.1). 

Book MATLAB function for finding the mean and the autocorrelation function using the frequency interpretation approach: ssp_mean_autoc_ensemble(M,N)
%Book MATLAB function m-file: ssp_mean_autoc_ensemble
function[mx,rx]=ssp_mean_autoc_ensemble(M,N);
%N=number of time instances;easily modified for
%other pdf's;M=number of realizations; 
x=randn(M,N); %randn=MATLAB function producing zero mean
              %Gaussian distributed white noise;x=MxN matrix;
              %sum(x,1)=MATLAB function that sums all the rows;
              %sum(x,2)=MATLAB function that sums all the columns;
mx=sum(x,1)/M;
for i=1:N
    rx(i)=sum(x(:,1).*x(:,i))/M; 
end;

At the command window and including the path that contains the above function, we write:>>[mx,rx]=ssp_mean_autoc_ensemble(10,50);subplot(2,1,1);stem(mx); subplot(2,1,2);stem(rx); . Next we introduce the values M=500 and N=50 and thus producing the other two plots.

More will be said about the correlation function of sampled samples in Ch 3.
Covariance

The covariance of a random sequence is defined by:
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The variance is found by setting m=n in (2.12)

. Thus,
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If the mean value is zero, then the variance and the correlation function at zero sift are identical.
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The estimator for the biased variance is given by


[image: image22.wmf]µ

µ

2

2

1

1

(())

N

n

n

xnm

N

s

=

=-

å


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (2.15)

and for the unbiased case we divide by N-1. The variance above can be found from the Book MATLAB function ssp_sample_biased_autoc (see Ch 3 for details) at 0 lag. The reader can also use the MATLAB functions std(data vector)=standard deviation and var(data vector)=variance. 
Example 2.2.1 With the help of MATLAB we obtain: x=2.5*randn(1,10)+6.8 or x=[
    7.5360    3.4595    8.5858   10.8589    5.0706    8.9450    9.9350    2.8157    3.1976    8.2279], 
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▄
Independent and Uncorrelated rv’s

If the joint pdf of two rv’s can be separated into two pdf’s, 
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The above equation is necessary and sufficient condition for the two random variables x(m), x(n) to be uncorrelated. Note that independent random variables are always uncorrelated. However, the converse is not necessarily true. If the mean value of any two uncorrelated rv’s is zero, then the random variables are called orthogonal. In general, two rv’s are called orthogonal if their correlation is zero.

2.3 Stationary Processes

For a wide-sense (or weakly) stationary (WSS) process, the cdf satisfies the relationship
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for any m, n and k. The above relationship is also applies for all statistical characteristics, such as mean value, variance, correlation etc. If the above relationship is true for any number of rv’s of the time series, then the process is known as strictly stationary process. 

The basic properties of a wide-sense real stationary process are, (see Pr 2.3.1):
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Autocorrelation Matrix

If 
[image: image30.wmf][(0)(1)()]

T

xxxp

=

L

x

is a vector representing a finite random sequence, then the autocorrelation matrix is given by
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However, in practical applications we will have a single sample at hand and this will permit us to find only the estimate correlation matrix 
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. Since, in general and in this text, we will have single realizations to work with, we will not explicitly indicate the estimate with the over bar.
Example 2.3.1 Find: a) the biased autocorrelation function with lag time up to 20 out of a sequence of 40 terms, which is a realization of rv’s having Gaussian distribution with zero mean value; b) create a 4x4 autocorrelation matrix.
Solution: The Book MATLAB function ex2_3_1 produces Fig 2.3.1 and is given below. To find the correlation matrix from the autocorrelation function we use the following MATLAB function:
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    ▄
Book MATLAB m-File:ex2_3_1
%ex2_3_1 m file
n=0:39;
s=sin(.2*pi*n);
v=randn(1,40); % randn=MATLAB function producing white Gaussian
               % distributed rv's;
x=s+v;
rx=sasamplebiasedautoc(x,20);% Book MATLAB function creating the 
                             % autocorrelation of x;
fts=fft(s,40); % fft=MATLAB function executing the fast Fourier
               %transform;
ftrx=fft(rx,40);
subplot(3,2,1);stem(s,'k');
xlabel('n');ylabel('s(n)');
subplot(3,2,2);stem(v,'k');
xlabel('n');ylabel('v(n)');
subplot(3,2,3);stem(x,'k');
xlabel('n');ylabel('x=s+v');
subplot(3,2,4);stem(rx,'k');
xlabel('lag number');ylabel('r_x');
subplot(3,2,5);stem(abs(fts),'k')
xlabel('freq. bins');ylabel('FT(s)');
subplot(3,2,6);stem(abs(ftrx),'k');
xlabel('freq. bins');ylabel('FT(r_x)');
Note: If we have a row vector x and we need to create a vector y with elements of x from k to m only we write: y=x(1,k:m);. If x is a column vector, we write: y=x(k:m,1);
Example 2.3.2: Let {v(n)} be a zero-mean, uncorrelated Gaussian random sequence with variance 
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Solution: a) the variance of {v(n)} is constant and, hence, is independent of the time, n. Since {v(n)} is an uncorrelated sequence it is also independent due to the fact it is  Gaussian sequence. From 
(2.12)

 we obtain: GOTOBUTTON ZEqnNum306410  \* MERGEFORMAT  and σ2=

rv(n,n)=constant. Hence, 
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, which implies that {v(n)} is a WSS process.

b) E{x(n)}=0 since E{v(n)}=E{v(n-1)}=0. Hence,
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Since the mean of {x(n)} is zero, a constant, and its autocorrelation is a function of the lag factor 
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, {x(n)} is a WSS process.












    ▄
Purely Random Process (White Noise, WN)
A discrete process is purely random process if the random variables {x(n)} are a sequence of mutually independent and identically distributed (iid) variables. Since the mean and cov(x(m),x(m-k)) do not depend on time, the process is WSS. This process is also known as white noise and is given by
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Since the process is white, implies that for k different than zero 
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Random Walk (RW)
Let {x(n)} be a purely random process (iid rv’s) with mean mx and variance 
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Therefore the process takes the form
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which is found from (2.21)

 by recursive substitution (y(1)=y(0)+x(0); y(2)=y(1)+x(1)=

0+x(0)+x(2); y(3)=y(2)+x(1)=. x(0)+x(1)+x(2) etc).
The mean is found to be E{y(n)}=nmx and the 
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 (see Prob 2.3.7). It interesting to note that the difference x(n)=y(n)-y(n-1) is purely random and, hence, stationary.

Moving Average Process (MA)
If {x(n)} is purely random process (iid) with mean zero and variance 
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is known as the moving average process of order q. The x’s can be scaled so that we can also set b(0)=1.
Since x(n)’s are iid with zero mean value, it is easy to show that (see Prob 2.3.6)
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For lag values 
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 and for shift k=1, we proceed as follows:
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Terms involving x’s at different times have been neglected because their product has expectation zero due to the fact that x’s are iid and have zero mean value. For n>q, they are not x’s with common times and thus the correlation is zero. If we now set the shift by q, then the above equation takes the general form
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By including k=0, (2.24)

. (2.25)

 includes the result of 
The process is WSS since the correlation is independent of time n and its mean value is constant. If the rv’s x(n)’s are normally distributed, then the y(n)’s are also and the process is completely determined by the mean and auto-covariance function. Therefore, the process under the last assumption is strictly stationary. 
Autoregressive Process (AR)
A process y(n) is autoregressive (AR) of order p if it is represented by the difference equation
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where x(n) is purely random process with zero mean and variance 
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The first order process is called Markov process, after the Russian mathematician A. Markov, and is defined by the first-order difference equation
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Multiply (2.26)

 by y(n-k) and take the ensemble average both sides to obtain
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or
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Since the input to the system is the white noise x(n) only, the cross correlation rxy() is valid only for k=0, since the output is also white. See next paragraph below.

For any input, the output of any LTI system is given by
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Multiply both sides of (2.30)

 and take the expectation of both sides of the equation


[image: image59.wmf]00

{()()}()(){()()}()()

xyx

ii

ExnynkrkhiExnxnkihirki

¥¥

==

-=--=+

åå

@


Since the input to the system is only at time n, the cross-correlation has only value when k=0. Hence, from the above equation we obtain
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Since any general system can be presented in the form
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we can always set a(0)=b(0)=1 without any loss of generality. Using the limiting property of the z-transform, we obtain
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Therefore, (2.29)

 becomes
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Example 2.3.3 Find the output of the first order AR system 
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 when the input is white noise.

Solution: The following MATLAB program produces Fig 2.3.2.

Book MATLAB m-File: ex2_3_3

%m-file: ex2_3_3
y(1)=0;
for n=2:50
    v(n)=rand;
    y(n)=-0.85*y(n-1)+v(n);
end;
m=0:49;
subplot(2,2,1);plot(m,v,'kx-');xlabel('n');ylabel('Input');
subplot(2,2,2);plot(m,y,'kx-');xlabel('n');ylabel('Output');
Yule-Walker Equations

Equations (2.33)

 can be written in the following matrix form
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2.4 Wiener-Khinchin Relations
For a WSS process, the correlation function asymptotically goes to zero and, therefore, we can find its spectrum using the discrete-time Fourier transform. Hence, the power spectrum is given by
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This function is periodic with period 
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 since exp(-jk(ω+2π))=exp(-jkω)). Given the power spectral density of a sequence, the autocorrelation of the sequence is given by the relation
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For real process, rx(k)=rx(-k) (symmetric function) and as a consequence the power spectrum is even function. Further more, the power spectrum of WSS process is also nonnegative. These two assertions are given below in the form of mathematical relations.
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The positive property of the power spectrum will be apparent when we define a second form of the power spectrum of random processes.
Example 2.4.1 Find the power spectra density of the sequence x(n)=sin(0.1*2*pi*n) +1.5*randn(1,32) with n=[0 1 2 … 31]. 

Solution: The following Book MATLAB m-file produced Fig 2.4.1.
Book MTLAB m-File: ex2_4_1
%Book MATLAB m-file: ex2_4_1
n=0:31;s=sin(0.1*pi*n);v=randn(1,32);%white Gaussian noise;
x=s+v;
r=xcorr(x,'biased');%the biased autocorrelation function
                    %is divided by N=length(x);
fs=fft(s,32);fr=fft(r,32);
subplot(3,2,1);stem(n,s,'k');xlabel('n');ylabel('s(n)');
subplot(3,2,2);stem(n,v,'k');xlabel('n');ylabel('v(n)');
subplot(3,2,3);stem(n,x,'k');xlabel('n');ylabel('x(n)=s(n)+v(n)');
subplot(3,2,4);stem(n,r(1,32:63),'k');xlabel('k, time lag');...
ylabel('r_x(k)');
subplot(3,2,5);stem(n,abs(fs),'k');xlabel('freq. bins');...
ylabel('S_s(e^{j\omega})');
subplot(3,2,6);stem(n,abs(fr),'k');xlabel('freq. bins');...
ylabel('S_x(e^{j\omega})');











   ▄

If we set 
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 we obtain the z-transform of the correlation function instead of the DTFT. Hence,
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The total power of a zero mean WSS random process is proportional to the area under the power density curve and is given by the following equation:
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Example 2.4.2 Find the power spectrum of a white noise process {x(n)}.
Solution: Since the process is iid, its correlation function is 
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   ▄


Apply (2.35)

 for the correlation function 
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to obtain the following power spectra density (see Prob 2.4.1):
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2.5 Filtering Random Processes
Linear time-invariant (LTI) filters (systems) are used in many signal processing applications. Since the input signals of these filters are usually random processes, we need to determine how the statistics of these signals are modified as a result of filtering. 

Let x(n), y(n) and h(n) be the filter input , filter output, and the filter impulse response, respectively. It can be shown (see Prob 2.5.1) that if x(n) is WSS process, then the filter output autocorrelation 
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The variance,
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(0)

yy

r

s

=

, of the output of the system is found from the above equation by setting k=0. Hence,
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If h(n) is zero outside the interval [0,N-1], then the variance of y(n) (power) can be expressed as follows
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The accent means the transpose of the vector. The reader will easily show that for N=2, (2.45)

 give identical results.(2.44)

 and 

If we take the z-transform of (2.43)

, and taking into consideration the property for convolution, we obtain the power spectra of the output of the system to be
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (2.46)


[image: image83.wmf]


[image: image84.wmf]1

2

()()()()a)

or

()()()()b)

or

()()()c)

yx

jjjj

yx

jjj

yx

SzSzHzHz

SeSeHeHe

SeSeHe

wwww

www

-

-

=

=

=


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (2.47)

Example 2.5.1 Two systems have the transfer functions: a) 
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. If the input to both systems is a white noise v(n) with variance 
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Solution: From (2.47)

, we obtain
(2.40)

 and 
a) 
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2.6 Probability Density Functions
Some of the important properties of the pdf’s are:

1. The pdf is nonnegative 
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2. Integrating pdf yields cdf:
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3. Normalization property
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4. Area under 
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2.6.1 Uniform Distribution
A WSS discrete random sequence that satisfies the relation
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is a pure random sequence whose elements x(n) are statistically independent and identical distributed (iid). A random variable x(n) at time n has a uniform distribution if its pdf is of the form
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The MATLAB function rand(1,1000), for example, will provide a random sequence of a 1000 elements whose sample mean value is 0.5 and its pdf is uniform from 0 to 1 with amplitude 1. To produce the pdf we can use the MTLAB function hist(x,20). This means that we want to produce the pdf dividing the range of values, in this case from 0 to 1, of the random vector x in 20 equal steps. They are two more useful functions of MATLAB that give the mean value, mean(x), and the variance, var(x). We can also find the standard deviation using the MATLAB function std(x), which is equal to the square root of the variance.

Note that
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Other statistical characteristics of the uniform distribution:
Range: 
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Mean: 
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Variance: 
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2.6.2 Gaussian (Normal) Distribution
The pdf of a Gaussian rv x(n) at time n with mean value mx and variance 
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Example 2.6.1 Find the joint pdf of a WGN (white Gaussian noise) with N elements each one having zero mean value and the same variance.
Solution: The joint pdf is
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   ▄
A discrete-time random process {x(n)} is said to be Gaussian if every finite collection of samples of x(n) are jointly Gaussian. A Gaussian random process has the following properties: a) is completely defined by its mean vector and covariance matrix, b) any linear operation on the time variables produces another Gaussian random process, c) all higher moments can be expressed by the first and second moments of the distribution (mean, covariance), and d) white noise is necessarily generated by iid samples (independence implies uncorrelated rv’s and vice versa).
Example 2.6.2 If the pdf f(x) is N(2.5,4), find the 
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. The error function is tabulated, but MATLAB can give very accurate values by introducing sampling values less than 0.0001. For this sampling value MATLAB gives the results:
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To produce a WGN with mean zero value and unit variance, N(0,1), the following MATLAB function can be used
x=randn(1,N); % x is a vector with N elements of WGN type with zero mean
                      % and unit variance;
MATLAB Function: hist(x,b)

hist(x,b); % x is a sample random vector from a particular distribution;

                %b is the number of ranges we are wishing to split the range

                % of the values of x from its minimum to its maximum; 

Transformation to N(m,va) from the N(0,1) of the rv x 

In case it is desired to have a WGN with mean m and variance va, we use the following transformation of the vector x.
z=va*x+m; % the variance of the time series z is va2, and its mean value is equal to m;


   %the variance of x is 1 and the mean value is zero;
· Algorithm

1. Generate two independent rv’s u1 and u2 from uniform distribution (0,1)

2. x1=(-2ln(u1))1/2cos(2πu2)   (or x2=(-2ln(u1))1/2sin(2πu2))

3. Keep x1 or x2 

Book MATLAB Function: sspnormalpdf(m,s,N)
function[x]=sspnormalpdf(m,s,N)

%[x]=sspnormalpdf(m,s,N);N=number of elements in x;
%s=standard deviation; m=mean value;

for i=1:N

    r1=rand;

    r2=rand;

    z(i)=sqrt(-2*log(r1))*cos(2*pi*r2);

end;

x=s*z+m;
Book MATLAB Function: sspnormalpdf1(m,s,N)

function[x]=sspnormalpdf1(m,s,N);
z=sqrt(-2*log(rand(1,N))).*cos(2*pi*rand(1,N));
x=s*z+m;

We can also use a Monte Carlo approach to obtain normal distributed random variables. The following program does this.
Book MATLAB function: sspmontecarlonormalpdf(m,s,N)

function[y]=sspmontecarlonormalpdf(m,s,N,M)
%m=mean value;s=standard deviation;
%N=number of variables;M=number of sumable normal variables;
for n=1:N
    x(n)=sum(randn(1,M))/sqrt(M);
end;
y=m+s*x;
The above Monte Carlo processing was based on the central limit theorem, which states:

For N independent rv’s 
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The central limit theorem has the following interpretation:
The properly normalized sum of many uniformly small and negligible independent rv’s tends to be a standard normal (Gaussian) rv. If a random phenomenon is the cumulative effect of many uniformly small sources of uncertainty, it can be reasonably modeled as normal rv.
If the random variable x is 
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 is N(0,1) (see Prob 2.5.2).
Other statistical characteristics of the normal distribution:

Range: 
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2.6.3 Exponential Distribution 
The pdf of an exponential distribution is
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· Algorithm

1. Generate u from a uniform distribution (0,1)

2. x=-b ln(u)

3. keep x
Book MATLAB Function: sspexponentialpdf(b,N)
function[x,m,sd]=sspexponentialpdf(b,N)

%[x,m,sd]=sspexponentialpdf(b,N);

for i=1:N

    x(i)=-b*log(rand);

end;

m=mean(x);sd=std(x);
Book MATLAB Function: sspexponentialpdf1(b,N)
function[x,m,sd]=sspexponentialpdf1(b,N)
x=-b*log([rand(1,N)]);
m=mean(x);sd=std(x);
Other statistical characteristics of the exponential distribution:

Range: 
[image: image123.wmf]0
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Mean: 
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Variance: 
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The following m-File creates a histogram for a normal rv (see Fig 2.6.1). With small modification it can be used for any distribution.
Book MATLAB m-File: normal_hist
%normal histogram m-File: normal_hist
n=1000;
x=1.5*randn(1,n)+6*ones(1,n);
subplot(1,2,1);plot(x(1,1:200),'k');
xlabel('n');ylabel('x(n)');grid on;
[m,z]=hist(x,10); %calculates counts in bins
               %and bin coordinates for 20 bins;
w=max(x)/length(z);   %calculates bin width;
pb=m/(n*w);    %probability in each bin;
v=linspace(min(x),max(x));%generates 100 values over 
               %range of rv x;
y=(1/(2*sqrt(2*pi)))*exp(-((v-6*ones(size(v))).^2)/4.5);
               %normal pdf;
subplot(1,2,2);
colormap([1 1 1]);%creates white bars, for other colors
                  % see >>help colormap;
bar(z,pb); %plots histogram;
hold on;plot(v,y,'k')%superimpose plot of normal pdf;
xlabel('RV value');ylabel('Probability density');
2.6.4 Lognormal Distribution
Let the rv x be 
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The values of 
[image: image128.wmf]x
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 and mx must take small values to produce a lognormal-type distribution.
· Algorithm

1. Generate z from N(0,1)

2. x=mx+
[image: image129.wmf]x
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z    (x is N(mx,
[image: image130.wmf]2

x

s

))

3. y=exp(x)

4. Keep y
Book MATLAB Function: ssplognormalpdf(m,s,N)
function[y]=ssplognormalpdf(m,s,N)

%[y]=ssplognormalpdf(m,s,N);

%m=mean value;s=standard deviation;N=number of samples;

for i=1:N

    r1=rand;

    r2=rand;

    z(i)=sqrt(-2*log(r1))*cos(2*pi*r2);

end;

x=m+s*z;

y=exp(x); 
Book MATLAB Function: ssplognormalpdf1

function[y]=ssplognormalpdf1(m,s,N)
n=sqrt(-2*log(rand(1,N))).*cos(2*pi*rand(1,N));
x=m+s*n;
y=exp(x);
Other statistical characteristics of the lognormal distribution(s=standard deviation):
Range; 
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2.6.5 Chi-Square Distribution
If 
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has a chi-square distribution with r degrees of freedom.


The pdf of the chi-square distribution is
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where r is the number of degrees of freedom and 
[image: image137.wmf]()
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 is the gamma function. MATLAB uses the function gamma() for evaluating the gamma function.
Book MATLAB Function for Chi-Square Distribution: sspchisquaredpdf(n,df)
function[y]=sspchisquaredpdf(n,df)

%Book MATLAB function:y=sspchisquaredpdf(n,df);

%n=number of the chi-distributed rv y;df=degrees

%of freedom, MUST BE EVEN number;

for m=1:n

    for i=1:df/2

        u(i)=rand;

    end;

    y(m)=-2*log(prod(u));

end;

We can also use a Monte Carlo approach to find rv’s that are chi-squared distributed. The following program does this.
Book MATLAB Function: sspmontecarlochisquaredpdf(r,N)

function[y]=sspmontecarlochisquaredpdf(r,N)
%N=number of chi-squared distributed rv's y;
%r=degrees of freedom, MUST BE EVEN number;
for n=1:N
    y(n)=sum(randn(1,r).^2);
end;
Other statistical characteristics of the chi-square distribution:

Range: 
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Mean: r

Variance: 2r
2.6.6 Student’s t Distribution 
The pdf of the Student’s t distribution is
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where r=N-1 is the number of degrees of freedom and N is the number of terms in the sequence {x(n)}.

If z has a standard normal distribution, N(0,1), and y has a chi-square distribution with r degrees of freedom, then



[image: image140.wmf]/

z

x

yr

=


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (2.62)

has Student’s distribution with r degrees of freedom. To generate x, we first generate z, as described above for the Gaussian distribution, then we generate y as described above for the chi-square distribution and then apply (2.62)

. 
Book MATLAB function:ssptdistributionpdf(r,N)
function[t]=ssptdistributionpdf(r,N)
%r=degrees of freedom,N=number of iid variables; 
z=randn(1,N);
y=sspchisquaredpdf(N,r);
t=z./sqrt(y/r);
Other statistical properties of the t distribution:

Mean: 0

Variance: 
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2.6.7 The F Distribution
If y1 is a chi-square rv with r1 degrees of freedom and y2 is chi-square rv with r2 degrees of freedom and both rv’s are independent, then the rv
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is distributed as an F distribution. To create an F variate, we first generate two chi-square variates and then apply (2.63)

. 

The pdf of the F distribution is
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where 
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 is the gamma function.
2.6.8 The Rayleigh Probability Density Function

A radio wave field, which arrives at a receiving point (antenna) after been scattered from a number of scattering points (trees, buildings etc), is given by the relation
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Resolving S into its real and imaginary components, we have
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In general, n is large and, therefore, the central limit theorem dictates that both X and Y are normally distributed. If, in addition, we assume that 
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and, similarly,
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Since E{X}=0 and E{Y}=0, the variances are
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Setting 
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we obtain the pdf’s of X and Y as
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To find the pdf f(x,y), we must first find if X and Y are correlated. Therefore, we investigate the ensemble average 
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since 
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 for all k and l. Therefore, X and Y are uncorrelated and because there are normal they are also independent. Hence, the combined pdf is
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Transformation of PDF’s

Consider the functions
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and their inverse functions
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If the rv X is near the value x and the rv Y is near the value y, U and V must be near 
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Substituting the inverse functions from (2.77)

 into above equation and dividing by dudv both sides we obtain the required probability density function to be equal to
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whre the absolute value is necessary to take into consideration both the non-decreasing and non-increasing pdf’s. The quantity shown with the absolute value symbol is known as the Jacobian of the transformation. 

The equivalent one dimensional transformation is given by
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To transform (2.76)

)(2.75)

 to polar coordinates, we use the following equations (correspond to 
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with inverse functions
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The Jacobian of this transformation is
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Substituting (2.79)

, we obtain(2.83)

 into (2.82)

, 
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If we set 
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 in the above equation, we obtain the general form of the Rayleigh pdf, which is given by
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The distribution of 
[image: image171.wmf]q

 is, as expected, uniform:
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The distribution for the rv R is
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i.e. the Rayleigh distribution.
2.7 Estimators
Most, if not all the times, our measurements produce a sample of N data values (a sequence) {x(n)}. We perform mathematical operations to determine some of the statistical properties, e.g. mean, variance, etc. These values are built around the notion of point estimate. The whole process is known as estimation. Since each realization will produce different values of these statistical quantities, we are confronted with a parameter space. 


Consider a family of pdf’s 
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where 
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Quality of Estimators
To qualify 
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Under this circumstance, the estimator is called an unbiased estimator. The biased estimator defines the relation
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where 
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 is the bias.
Example 2.7.1 Let the finite sequence {x(n)}be made of N iid rv’s . Show that the sample mean is an unbiased estimator.
Solution: We proceed as follows:
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Therefore, the sample mean is an unbiased estimator. We observe that the sample mean is a statistic for the mean parameter.











   ▄

Unbiased Minimum Variance: 

For a given positive integer N, 
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is called an unbiased minimum variance estimator of the parameter 
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 if y is unbiased, that is E{y}=
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, and if the variance of y is less than or equal to the variance of every other unbiased estimator of 
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.
Example 2.7.2 Let the signal be 
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where v(n) is a zero-mean noise. Based on the data set 
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, we would like to estimate A. Since the average value of v(n) is zero, it is natural to estimate A by the time average value (sample mean) of the data, or
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We have already shown in the previous example that E{
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}=A, which indicates that the accepted statistic (sample mean) is an unbiased estimator. Next, we proceed to find the variance of the sample mean. Hence,
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where in the double summation the 
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. Because 
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. This result indicates that as the number of data increases, the mean square value difference from the population mean decreases and the estimate becomes more accurate.












         ▄

If the bias and the variance of an estimator tend to zero as the sample size N becomes large. This means that the sampling distribution will tend to be centered about A (in the above examples) and the precision of the estimator increases without limit. An estimator possessing this property is called a consistent estimator.
2.8 Confidence Intervals

Confidence Intervals of the Sample Mean 
We are, next, interested in finding confidence intervals for the sample mean estimator. We know from theory of statistics that the sample-mean and variance of an iid sequence {x(n)} with normal distribution, N(m, 
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Therefore, we have that 
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 and both are statistically independent. The t distribution above was defined as the ratio of such two rv’s. Based on the t distribution and the above discussion, we know that
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has a t distribution with N-1 degrees of freedom, for all 
[image: image206.wmf]µ
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>0. The table below gives us some feeling of the critical region that we may want to select. For example, we want to find out the probability that the mean value falls within a range, say, 0.95 or 95% probable. It is instructive to look Fig 2.8.1 for some range and critical region definitions.
Table 2.8.1 The t Distribution (see Sec 2.6)
________________________________________________________________________
Degrees of                                            
[image: image207.wmf]{}
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Freedom, r 


0.90

 
0.95


0.975
________________________________________________________________________
             r                                       tc                                  tc                                  tc

2


1.886


2.920


4.303

5


1.476


2.015


2.571


8


1.397


1.860


2.306


12


1.356


1.782


2.179


15


1.341


1.753


2.131


20


1.325


1.725


2.086


25


1.316


1.708


2.060


30


1.310


1.697


2.042

________________________________________________________________________

Since the area under a pdf is one, we have the following relationships
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Next we would like to find the probability that the population mean will be within the confidence region. From (2.92)

, we obtain
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Using MATLAB and assuming that the statistics of 10 thousand terms sequence gives the population mean, we can obtained a 40 term sub-sequence. Next, if we want the area of the critical region to be about 
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, and selecting a critical time tc=2.0, we find that the area of the critical region (using MATLAB for the integration) is 
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This value is very close to the desired one. If the critical value was not guessed correctly, we can try repeating the integration for other values till we get a good approximation. Since in the command window we have to change only tc, we can perform each new integration within a few second. Using this approach, we do not need tables. Therefore, the probability to have the population mean between -2 and 2 is 1-0.0525=0.9475 or 94.75% that its value will be within that range. Inserting the values found in MATLAB for the sequence of 40 terms, we obtain 
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The population mean was found to be equal to mx=0.5052.
Confidence Intervals for the Variance
For a realization, {x(n)}, with elements been 
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 distributed. For a particular sequence with length N, we must find positive constants a and b such that the probabilities 
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are equal to some desired value, e.g. 0.95. The short Table below gives some values involving the 
[image: image219.wmf]2

c

 distribution.
Table 2.8.2 The Chi-Square Distribution (see Sec 2.6)


Degrees                                        
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1.15
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12.8

15.1


8
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23.2


12


5.23

21.0
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15


7.26

25.0

27.5

30.6

20


10.9

31.4

34.2

37.6


25


14.6

37.7

40.6

44.3


30


18.5

43.8

47.0

50.9

________________________________________________________________________
Example 2.8.1 Find the xc’s so that the population variance has a 95% probability to fall within the confidence region. The sequence is: x={ -0.4326   -1.6656    0.1253    0.2877   -1.1465    1.1909    1.1892   -0.0376    0.3273    0.1746}.

Solution: For this case N=9, 
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0.8162, and if we take a=17 and b=2 we obtain (using MATLAB) that the probability p(2<X<17) is 0.9428, which is very close to the desired one. Hence, (2.96)

 gives
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The population variance for this case is equal to 1.0023.












   ▄
PROBLEMS

2.1.1 Create the following two sequences using MATLAB: a) x=randn(1,64) and b) y=conv(x,[1  0.8  0.2  0.1]). Plot the following figures:1) plot(x(n),x(n+1),’x’); 2)plot(x(n),x(n+3),’x’); 3)plot(y(n),y(n+1),’x’); 4) plot(y(n),y(n+3),’x’). Observe the similarities and differences and indicate the correlated and uncorrelated situations.

2.1.2 Plot the cumulative probability density function of the central normal (Gaussian) pdf : 
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 Plotted from x=-3 to 3.
2.2.1 Using the continuous case formulation find the sample mean value formula.
2.2.2 Show that the sample mean is equal to the population mean.
2.2.3 The autocorrelation of a continuous random variable is defined as follows: 
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Using the above equation find the mean value and the autocorrelation function of the random function 
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 are constants, and φ is a uniform rv over the range 
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. Find the mean and autocorrelation of X(t).
2.3.1 Verify (2.18)

.

2.3.2 Find the autocorrelation function x(n)=Acos(nω+θ), where A and ω are constants and θ is uniformly distributed over the interval –π to π.
2.3.3 Prove the following properties of a WSS stationary process: a) 
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2.3.4 Based on the results of Pr 2.3.2, create a 2x2 autocorrelation matrix.
2.3.5 If the sequence {x(n)} is characterized by iid random variables find the mean and the variance of the signal y(n)=ax(n)+b, where a and b are constants.
2.3.6 Verify (2.24)

.
2.3.7 Verify the covariance of the random walk expression.
2.3.8 Repeat Ex 2.4.1 for the following sequences: a) x=randn(1,128); b) x=rand(1,128); c) x=rand(1,128)-0.5; d) x=conv(randn(1,125),[1  0.8  0.2  0.1]);. Repeat the above steps using windows e.g xw=x*.window(@hamming,length(x));
2.3.9 Given the first-order MA process, 
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2.4.1 Verify (2.42)

.
2.5.1 Find the output autocorrelation function of a system if the input is a WSS process. The input, output and the impulse response of the system are respectively x(n), y(n) and h(n).
2.5.2 If the random variable x is 
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 with variance greater than zero, then the random variable 
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2.6.1 a) Plot the pdf’s for the t distribution and the F distribution. Use different values of degrees of freedom. b) Find the 
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 distribution and 16 degrees of freedom.
2.7.1 The following random sequence is given having iid elements with Gaussian distribution: x={1.4279    3.3335    1.3186    1.0087   -0.4647    1.7888   -1.4724    2.6286    4.4471   -0.1836}. Find the region of confidence so that there is 95% probability that the population mean will fall in this region.
2.8.1 Verify (2.91)

-a

SOLUTIONS-SUGGESTIONS-HINTS

2.1.1 
The rv’s y(n) are the output of a low-pass filter.
2.1.2

Use the following MATLAB m-file:

%file: prob2_1_2
for x=1:120
    y=1:x;
    F(x)=0.05*sum(exp(-0.5*(y*0.05-3).^2))/sqrt(2*pi);
end;
m=-3:0.05:3-0.05;
f=exp(-m.^2/2)/sqrt(2*pi);
plot(m,F,m,f)
2.2.1
In this development we will drop the time n and, hence, it is assumed that we deal with a rv x at time n. Let’s divide the real line x into intervals of length Δx with boundary points xi. We further assume that we want to find the mean value of the function g(x). Hence, (2.7)

 becomes
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. To make the transformation from the integral to summation we made the following important assumption: all the sample values of x have the same pdf, which means that are identically distributed. Next we see that: 
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, where xi is a value at a time n (we have suppressed the time here). Using the relative frequency definition of the probability we obtain (see(2.9)

)
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, where Ni is the number of measurements in the interval: 
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. Because g(xi)Ni approximates the sum of values of g(x) for points within the interval i, then 
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. If g(x)=x, then we obtain 
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2.2.2
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2.2.3
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Autocorrelation: 
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Note that the mean value is a constant and the correlation function is a function of the time difference 
[image: image247.wmf]t
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2.3.1
a) E{x(n+k)}=E{x(m+k)} implies that the mean value must be constant independent of time. b) 
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2.3.2
[image: image251.wmf]2
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[image: image252.wmf]22

sin()}(1/2){cos[()](1/2)cos[()2]}(1/2)co

s[()]

nAEmnmnAmn

wqwwqw

+=--++=-

Because the ensemble average of the sine function with respect to theta is zero (constant) and the autocorrelation is a function of the lag factor, the signal is WSS process.
2.3.3 
a) 
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2.3.4
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2.3.5
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2.3.6
a)
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 since it is assumed that the mean value of the rv’s x(n)’s is zero. b) 
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, since the rv’s are independent with mean zero.
2.3.7
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2.3.9
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 , since white noise with zero mean value has the property 
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2.4.1
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 where for the negative values of k we set k=-k in the expression. Since to the negative summation we introduced an extra k=0 that gives 1 we must subtract 1 from the expression. Applying the geometric series formula for infinite length, we obtain
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2.5.1
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Next, we shift (1) by k, multiply by x(n) and then take the ensemble average of both sides of the equation. Hence, we find
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Since in (3) the summation is a function only of k, it indicates that the cross-correlation function is also only a function of k. Hence we write: 
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. The autocorrelation of y(n) is found from (1) by shifting the time by k, y(n+k), multiply next the new expression by y(n) and then take the ensemble average. Therefore, we find
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Next, we set m=n-l in (5) to obtain 
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. Remember that the convolution of two sequences, one been reversed, is equal to the correlation between the original sequences. Combine (6) and (4) to obtain 
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2.5.2
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If we change the variable of integration by setting 
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. But f(w)=dF(w)/dw and, hence, f(w) is equal to the integrand which is the desired solution.
2.7.1

Hint: Try at first critical t=2.228.

2.8.1

The mean value has already been proved in Ex 2.7.1. For the variance (the variables are independent) we have: 
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. This result is true it is because we have assumed the rv’s to be independent. Comparing this result with (2.91)

 we observe that all the ai’s are the same and, hence, 
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