
CHAPTER 6

ADAPTIVE FILTERING-LMS ALGORITHM

6.1 Introduction
In this chapter, we present the celebrated least mean-square (LMS) algorithm, developed by Widrow and Hoff in 1960. This algorithm is a member of stochastic gradient algorithms, and because of its robustness and low computational complexity, it has been used in a wide spectrum of applications. This chapter introduces us in the procedures of filtering random signals.
The LMS algorithm has the following most important properties:
1. It can be used to solve the Wiener-Hopf equation without finding matrix inversion. Furthermore, it does not require the availability of the autocorrelation matrix of the filter input and the cross correlation between the filter input and its desired signal.
2. Its form is simple as well as its implementation, yet it is capable of delivering high performance during the adaptation process.
3. Its iterative procedure involves: a) computing the output of an FIR filter produced by a set of tap inputs (filter coefficients), b) generation of an estimated error by computing the output of the filter to a desired response, and c) adjusting the tap weights (filter coefficients) based on the estimation error.
4. The correlation term needed to find the values of the coefficients at the n+1 iteration contains the stochastic product x(n)e(n) without the expectation operation that is present in the steepest descent method.
5. Since the expectation operation is not present, each coefficient goes through sharp variations (noise) during the iteration process. Therefore, instead of terminating at the Wiener solution, the LMS algorithm suffers random variation around the minimum point (optimum value) of the error-performance surface.
6. It includes a step-size parameter, μ, that must be selected properly to control stability and convergence speed of the algorithm.
7. It is stable and robust for a variety of signal conditions.

6.2 The LMS Algorithm
The LMS algorithm is given by the following equation

[bookmark: ZEqnNum931057]		
where

[bookmark: ZEqnNum857307]		

[bookmark: ZEqnNum582180]		

		

		
The algorithm defined by , , and constitute the adaptive least-mean square (LMS) algorithm. The algorithm at each iteration requires that x(n), d(n) and w(n) are known. The LMS algorithm is a stochastic gradient algorithm if the input signal is a stochastic process. This results in varying the pointing direction of the coefficient vector during the iteration.

	The key component of an adapter filter is the set of rules, or algorithms, that define how the term in is formed so that as the filter coefficients converge to the Wiener-Hoff equation

	
Furthermore, it should not be necessary to know the second order statistics of the input signal or the correlation between the input signal and the desired one. Finally, for non-stationary signals the filter should be able to adapt to the changing statistics and “track” the solution as it involves in time.
	An important consideration for the implementation of an adaptive filter is the requirement that the error signal, e(n), be available to the adaptive algorithm. The error allows the filter to “measure” its performance and determine how the filter coefficients should be modified so that convergence occurs.
	The simplicity of the LMS algorithm comes from the fact that the update of the kth coefficient,

	

requires only one multiplication and one addition (the value need only be computed once and may be used for all of the coefficients). Therefore, an LMS adaptive filter, having M+1 coefficients, requires M+1 multiplications and M+1 additions to update the filter coefficients. It avoids creating autocorrelation matrices and inversion of matrices.
	A FIR adaptive filter realization is shown in Fig 6.2.1. Fig 6.2.2 shows the block-diagram representation in the LMS filter and Table 6.2.1 presents the LMS algorithm.

Table 7.2.1: The LMS Algorithm for a Mth-Order FIR Adaptive Filter
--
Inputs: M=filter length
 μ=step-size factor

Outputs: y(n)= adaptive filter output=
 e(n)=d(n)-y(n)=error

Book MATLAB LMS function: [w,y,e,J]=ssp_lms(x,dn,mu,M)
function[w,y,e,J]=ssp_lms(x,dn,mu,M)
%function[w,y,e,J]=aalms(x,dn,mu,M);
%all quantities are real-valued;
%x=input data to the filter; dn=desired signal;
%M=order of the filter;
%mu=step-size factor; x and dn must be of the same length;
N=length(x);
y=zeros(1,N); %initialized output of the filter;
w=zeros(1,M); %initialized filter coefficient vector;
for n=M:N
	x1=x(n:-1:n-M+1); %for each n the vector x1 is
	 %of length M with elements
 %from x in reverse order;
	y(n)=w*x1';
	e(n)=dn(n)-y(n);
	w=w+2*mu*e(n)*x1;
end;
J=e.^2;%J is the learning curve of the adaptation;

The book MATLAB function ssp_lms_w.m, giving below, provides the changing values of the filter coefficients as a function of the iteration number n.

Book MATLAB function providing the history of the filter coefficients:
[w,y,e,J,w1]=ssp_lms_w(x,dn,mu,M)

function[w,y,e,J,w1]=ssp_lms_w(x,dn,mu,M)
%function[w,y,e,J,w1]=aalms1(x,dn,mu,M);
%this function provides also the changes of two
%filter coefficients
%versus iterations;
%all quantities are real-valued;
%x=input data to the filter; dn=desired signal;
%M=order of the filter;
%mu=step size; x and dn must be of the same length;
%each column of the matrix w1 contains
%the history of each
%filter coefficient;
N=length(x);
y=zeros(1,N);
w=zeros(1,M); %initialized filter coefficient vector;
for n=M:N
 xl=x(n:-1:n-M+1); %for each n the vector xl of
 %length M is produced
 %with elements from x in
 %reverse order;
 y(n)=w*xl';
 e(n)=dn(n)-y(n);
 w=w+2*mu*e(n)*xl;
 w1(n-M+1,:)=w(1,:);
end;
J=e.^2;%J is the learning curve of the
%adaptive process; each column of the matrix w1
%depicts the history of each filter coefficient;

6.3 Examples Using the LMS Algorithm
The following examples will elucidate the use of the LMS algorithm to different areas of engineering and will create an appreciation for the versatility of this important algorithm.

Example 6.3.1 (Linear Prediction): We can use an adaptive LMS filter as a predictor as shown in Fig 6.3.1a. Fig 6.3.1b shows two-coefficient adaptive filter with its adaptive weight-control mechanism. The data {x(n)} were created by passing a zero-mean white noise {v(n)} through an autoregressive (AR) process described by the difference equation. The LMS filter is used to predict the values of the AR filter parameters 0.4668 and -0.3589. A two-coefficient LMS filter predicts x(n) by

		
Fig 6.3.2 gives w0 and w1 versus the number of iterations for two different values of step size (μ=0.001 and μ=0.0005). The adaptive filter is a two-coefficient filter. The noise is white and Gaussian distributed. The figure shows fluctuations in the values of coefficients as they converge to a neighborhood of their optimum value 0.4668 and -0.3589 respectively. As the step size μ becomes smaller, the fluctuations are not as large, but the convergence speed to the optimal values is slower.

Book MATLAB Function for One-Step LMS Predictor:
[w,y,e,j,w1]=ssp_one_step_predictor(x,mu,M)

function[w,y,e,J,w1]=ssp_one_step_predictor(x,mu,M)
%function[w,y,e,J,w1]=ssp_one_step_predictor(x,mu,M);
%x=data=signal plus noise;mu=step size factor;
%M=number of filter
%coefficients;w1 is a matrix and each column
%is the history of each
%filter coefficient vesus time n;
N=length(x);
y=zeros(1,N);
w=zeros(1,M);
for n=M:N-1
 x1=x(n:-1:n-M+1);
 y(n)=w*x1';
 e(n)=x(n+1)-y(n);
 w=w+2*mu*e(n)*x1;
 w1(n-M+1,:)=w(1,:);
end;
J=e.^2;
%J is the learning curve of the adaptive process;

											 ▄

Example 6.3.2 (Modeling) Adaptive filtering can also be used to find the coefficients of an unknown system (filter). Let the unknown system be the one shown in Fig 6.3.3. The data x(n) were produce in a similar way as in Ex 6.3.1 above. The desired signal is given as follows: . If the output is approximately equal to d(n), it implies that the filter coefficients of the adaptive filter are approximately equal to the unknown system. Fig 6.3.4 shows the ability of adaptive filtering to identify the unknown system. After about 250 iterations, the system is practically identified. For this example we used =0.01. It is apparent that the forth coefficient is zero, as it should be, since the system to be identified has only three coefficients.
												 ▄
Example 7.3.3 (Noise Cancellation) A noise cancellation scheme is shown in Fig 6.3.5. We introduce in this example the following values: H1(z)=1 (or h(n)=δ(n)), v1(n)=white noise=v(n), L=1, s(n)=sin(0.1πn). Therefore, the input signal to the filter is x(n)=s(n-1)+v(n-1) and the desired signal is d(n)=s(n)+v(n).The Book LMS MATLAB algorithm ssp_lms was used. Fig 6.3.6 shows the signal, the signal plus noise and the outputs of the adaptive filter for two different sets of coefficients: M=4 and M=16. The value of the µ was set equal to 0.001.
												 ▄

Example 6.3.4 (Inverse System Identification) To find the inverse of an unknown filter (system), we place the adaptive filter in series with the unknown system as shown in Fig 6.3.7. The delay is needed so that the system is causal. Fig 6.3.8 shows a typical learning curve. In this example we used a three-coefficient IIR filter, and the input to the unknown system was a sine function with a white Gaussian noise.
												 ▄

Example 6.3.5 (Effect of µ on learning curve) The following Book MATLAB function produces figures, as that shown in Fig 6.3.9.

Book MATLAB function: [amse]=ssp_example635(mu,M,an)
function[amse]=ssp_example639(mu,M,an)
%function[amse]=ssp_example639(mu,M);
%this function produces figures like in example 6.3.9;
%M=number of filter coefficients;an=number of times
%the error to be averaged;
eav=zeros(1,2000);
dn(1)=0;dn(2)=0;x(1)=0;x(2)=0;
for k=1:an
 for n=3:2000
 dn(n)=0.9621*dn(n-1)-0.2113*dn(n-2)+0.2*randn;
 x(n)=dn(n-1);
 end;
 [w,y,e]=ssp_lms(x,dn,mu,M);
 eav=eav+e.^2;
end;
amse=eav/an;

												▄

Properties of the LMS Method

1)

The steepest-descent method reaches the minimum-mean-square error Jmin as and which is identical to Wiener solution.
2)
The LMS method produces an error J(∞) that approaches Jmin as and remains larger than Jmin.
3)
The LMS method produces a w(n), as the iterations , that is close to the optimum wo.
4) The steepest-descent method has a well-defined learning curve consisting of a sum of decaying exponentials.
5) The LMS learning curve is a sum of noisy decaying exponentials and the noise, in general, decreases the smaller values the step-size parameter μ takes.
6) In the steepest-descent method, the correlation matrix Rx of the data x(n) and the cross-correlation vector pdx(n) are found using ensemble averaging operations from the realizations of the data x(n) and desired signal d(n).
7) In the LMS filter, an ensemble of learning curves is found under identical filter parameters and then averaged point by point.

It is recommended that the reader repeat the examples by varying all the different parameters, the noise amplitude, the signal amplitude etc. so that requires experience of the sensitivity of these factors to obtain a solution.

9

oleObject2.bin

image3.wmf
()()()error

endnyn

=-

oleObject3.bin

image4.wmf
011

()[()()()]filter taps at time

T

M

nwnwnwnn

-

=

w

L

oleObject4.bin

image5.wmf
()[()(1)(2)(1)] input data

T

nxnxnxnxnM

=---+

x

L

oleObject5.bin

image6.wmf
2()()

enn

m

x

oleObject6.bin

image7.wmf
n

®¥

oleObject7.bin

image8.wmf
1

lim()

xdx

n

n

-

®¥

=

wRr

oleObject8.bin

image9.wmf
(1)()2()()

kk

wnwnenxnk

m

+=+-

oleObject9.bin

image10.wmf
2()

en

m

oleObject10.bin

image11.wmf

oleObject11.bin

image12.wmf
()input data to the adaptive filter

n

=

x

oleObject12.bin

image13.wmf
(0)initialization filter vector=

=

w0

oleObject13.bin

image14.wmf
()()()

nndn

Ù

º

T

wx

oleObject14.bin

image15.wmf
(1)()2()()

nnenn

m

+

w=w+x

oleObject15.bin

image16.wmf
()0.4668(1)0.3589(2)randn

xnxnxn

=---+

oleObject16.bin

image17.wmf
1

0

()()(1)()

i

i

xnwnxniyn

Ù

=

=--

å

@

oleObject17.bin

image18.wmf
()()2(1)4(2)

dnxnxnxn

=--+-

oleObject18.bin

image19.wmf
m

oleObject19.bin

image20.wmf
n

®¥

oleObject20.bin

image21.wmf
()

n

®

o

ww

oleObject21.bin

image22.wmf
n

®¥

oleObject22.bin

image23.wmf
n

®¥

oleObject23.bin

image1.wmf
(1)()2()[()()()]

()2()[()()()]

()2()()

nnndnnn

nndnnn

nenn

m

m

m

+

=

T

T

w=w+x-xw

=w+x-wx

w+x

oleObject1.bin

image2.wmf
()()()filter output,

ynnn

=

T

wx

