CHAPTER 5

OPTIMAL FILTERING-WIENER FILTERS



5.1 The Mean-Square Error

In this chapter we develop a class of linear optimum discrete-time filters known as the Wiener filters. These filters are optimum in the sense of minimizing an appropriate function of the error, known as the cost function. The cost function that is commonly used in filter design optimization is the mean-square error (MSE). Minimizing MSE involves only second-order statistics (correlations), and leads to a theory of linear filtering that is useful in many practical applications. This approach is common to all optimum filter designs. Fig 5.1.1 shows the block diagram presentation of the optimum filter problem.
The basic idea is to recover a desired signal d(n) given a noisy observation x(n)=d(n)+v(n), where both d(n) and v(n) are assumed to be WSS processes. Therefore, the problem can be stated as follows:
Design a filter that produces an estimate 
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is minimized.

Depending on how the data x(n) and the desired signal d(n) are related, there are four basic problems which need solution. These are: Filtering, Smoothing, Prediction and Deconvolution.

5.2 The FIR Wiener Filter 
Let the sample response (filter coefficients) of the desired filter be denoted by w. This filter will process the real-valued stationary process {x(n)} to produce an estimate 
[image: image3.wmf]()

dn

Ù

of the desired real-valued signal d(n). Without loss of generality, we will assume, unless otherwise stated, that the processes {x(n)}, {d(n)}, etc. have zero mean values. Furthermore, assuming that the filter coefficients do not change with time, the output of the filter is equal to the convolution of the input and the filter coefficients. Hence, we obtain
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The MSE is given by (see (5.1)

 )
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where
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The above matrix is the correlation matrix of the input data. The matrix is symmetric because the random process is assumed to be stationary and, hence, we have the equality, 
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. Since in practical cases we have only one realization, we will assume that the signal is ergodic. Therefore, we will use the sample autocorrelation function, which is an estimate. However, in this text we will not differentiate the estimate with an over-bar since all of our simulations will be based only on estimate quantities and not on ensemble averages.
Example 5.2.1:  Let’s assume that we have found the sample autocorrelation coefficients (rx(0)=1.0, rx(1)=0) from given data x(n) which, in addition to noise, contain the desired signal.  Furthermore, let the variance of the desired signal σd2=24 and the cross-correlation vector be pdx=[2  4.5]T. It is desired to find the surface defined by the mean- square function J(w).
Solution: Introducing the above values in (5.3)

, we obtain
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Note that the equation is quadratic with respect to filter coefficients and it is true for any number of filter coefficients.  In the general case, products 
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 will also be present. The data are the sum of the desired signal and noise. From the data we find the correlation matrix and the cross-correlation between the desired signal and the data. Note that to find the optimum Wiener filter coefficients the desired signal is needed.  Fig. 5.2.1 shows the mean-square error surface. This surface is found by inserting different values of w0 and w1 in the function J(w). The values of the coefficients which correspond to the bottom of the surface are the optimum Wiener coefficients.  The vertical distance from the w0-w1 plane to the bottom of the surface is known as the minimum error, Jmin, and corresponds to the optimum Wiener coefficients. We observe that the minimum height of the surface corresponds to about w0=2 and w1=4.5 which are the optimum coefficients as we will learn how to find them in the next section.  The following book MATLAB m-file was used:

Book MATLAB m-file: fig5_2_1
%Book MATLAB m-file:fig5_2_1
w0=-1:0.2:8;
w1=w0;
[W0,W1]=meshgrid(w0,w1);
%W0 and W1 are a pair of matrices 
%representing a rectangular grid;
j=24-4*W0-9*W1+W0.^2+W1.^2;
colormap(gray)
mesh(w0,w1,j)












▄

Fig 5.2.2 shows a schematic representation of the Wiener filter, and Fig 5.2.3 shows am adaptive FIR filter. 

5.3 The Wiener Solution-Orthogonal  Principle

From Fig. 5.2.1, we observe that there exists a plane touching the parabolic surface at its minimum point, and is parallel to the w-plane. Furthermore, we observe that the surface is concave upwards and, therefore from calculus, the first derivative of the MSE with respect to w0 and w1 must be zero at the minimum point and the second derivative must be positive. Hence we write
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For the two-coefficient filter,  (5.3)

 becomes
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Introducing (5.6)

 produces the following set of equations
(5.7)

 in part a) of 
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The above system can be written in a form, called the discrete form of the Wiener-Hopf equation, which is
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The superscript “o” indicates the optimum Wiener solution for the filter. Note that to find the correlation matrix we must know the second-order statistics (autocorrelation). If, in addition, the matrix is invertible, the optimum filter is given by
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It turns out, that in most practical signal processing applications, the matrix Rx is invertible. For an M-order filter, Rx is a 
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 matrix, wo is a 
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If we differentiate once more  
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  with respect to  GOTOBUTTON ZEqnNum767375  \* MERGEFORMAT , which is equivalent in differentiating J(w) twice, we find that it is equal to 2rx(0). But rx(0)=E{x(m)x(m)} =
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,  we obtain the minimum error in the mean-square sense  (see Prob 5.3.1)
(5.10)

  in 


[image: image23.wmf]22

min

dd

J

ss

=

ToT-1

dxdxxdx

-pw=-pRp


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (5.11)

which indicates that the minimum point of the error surface is at a distance Jmin above the w-plane. The above equation shows that if no correlation exists between the desired signal and the data, or equivalently pdx=0, the error is equal to the variance of the desired signal.

The problem we are facing is how to choose the length M of the filter. In the absence of a priori information, we compute the optimum coefficients, starting from a small reasonable number. As we increase the number, we check the MMSE and if its value is small enough, e.g.  MMSE<0.01, we accept the corresponding number of the coefficients.
Example 5.3.1: We would like to find the optimum filter coefficients w0 and w1 of the Wiener filter which approximates (models) the unknown system with coefficients b0=1 and b1=0.38 (see Fig 5.3.1).

Solution: The following MATLAB program was used:

Book MATLAB m-file: ex5_3_1

%m-file: ex5_3_1

v=0.5*(rand(1,20)-0.5);%v=noise vector(20 uniformly distributed rv’s 
    %with mean zero);
x=randn(1,20);% x=data vector entering the system and the Wiener 
    %filter (20 normal distributed rv’s with mean zero;   
sysout=filter([1 0.38],1,x);% sysout=system output with x as input; 
    %filter(b,a,x) is a
    %MATLAB function, where b is the vector of the 
    %coefficients of the ARMA numerator,
    % a is the vector of the coefficients of the 
    %ARMA denominator (see (2.4.7);
dn=sysout+v;
rx1=xcorr(x,2,'biased');
rx=rx1(1,3:4);
Rx=toeplitz(rx);%toeplitz() is a MATLAB function that
                % gives the symmetric
                % autocorrelation matrix;
pdx=xcorr(x,dn,2,'biased');%xcorr() a MATLAB function that 
                %gives a symmetric biased crosscorrelation;
p=pdx(1,2:3);
w=inv(Rx)*p';
dnsig1=xcorr(dn,1,'biased');
dnsig=dnsig1(2);
jmin=dnsig-p*w;













▄
Typical values found in this example are: Rx=[0.9554  0.0295; 0.0295   0.9554];p=[0.3413   0.9450]; w=[0.3270  0.9791]; Jmin=0.0179. We observe that the Wiener coefficients are close of the unknown system.
Orthogonality Condition
In order for the set of filter coefficients to minimize the cost function J(w), it is necessary and sufficient that the derivatives of J(w) with respect to wk be equal to zero for k=0,1,2,…,M-1,
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But
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and, hence, it follows (note that the derivative is for one variable wk only and, therefore, the rest of the factors in the summation become zero besides one)
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Therefore, (5.12)

 becomes
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where the superscript “o” denotes that the corresponding wk’s used to find the estimation error eo(n) are the optimal ones. Fig 5.3.2 illustrates the orthogonality principle where the error eo(n) is orthogonal (perpendicular) to the data set {x(n)} when the estimator employs the optimum set of filter coefficients. 
5.4 Wiener Filtering Examples
The following examples will elucidate the utility of the Wiener filtering.

Example 5.4.1 (Filtering): Filtering of noisy signals (noise reduction) is extremely important and the method has been used in many applications such as speech in noisy environment, reception of data across a noisy channel, enhancement of images, etc. 

Let the received signal be  x(n)=d(n) +v(n), where v(n) is  noise with zero mean, variance 
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Similarly, we obtain
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where we used the assumption that d(n) and v(n) are uncorrelated and v(n) has zero mean value. Therefore, the Wiener-Hopf equation (5.9)

  becomes
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The following Book MATLAB m-file was used to produce the results shown in Fig 5.4.1.

Book MATLAB m-file: ex5_4_1
%m-file:ex5_4_1
n=0:511;
d=sin(.2*pi*n);%desired signal
v=0.5*randn(1,512);%white Gaussian noise;
x=d+v;%input signal to Wiener filter;
rd1=xcorr(d,20,'biased');
rd=rd1(1,20+1:39);      %rdx=rd=biased autocorralation
                        %function of the
                        %desired signal;
rv1=xcorr(v,20,'biased');
rv=rv1(1,20+1:39);%rv=biased autoc. function of the noise;
R=toeplitz(rd(1,1:15))+toeplitz(rv(1,1:15));
pdx=rd(1,1:15);
w=inv(R)*pdx';
y=filter(w',1,x);%output of the filter;

But
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and, hence, from the MATLAB function var() we obtain 
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▄

Example 5.4.2(System identification): It is desired, using a Wiener filter, to estimate the unknown impulse response coefficients hi’s of a FIR system (see Fig 5.4.2). The input {x(n)} is a zero mean iid rv’s with variance 
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. Let the impulse response h of the filter be: h=[0.9  0.6  0.2]T. Since the input {x(n)} is zero mean and iid rv’s, the correlation matrix Rx is a diagonal matrix with elements having values 
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Hence, we obtain (
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and the MMSE is (assuming 
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, and, hence, Jmin=1.21-(0.92+0.62)=0.04.
Book MATLAB function for system identification using Wiener filter: 

[w,jm]=sspwieneridentif(x,d,M) 

function[w,jm]=sspwieneridentif(x,d,M)
%function[w,jm]=sspwieneridentif(x,d,M);
%x=data entering both the unknown filter
%(system) and the Wiener filter;
%d=the desired signal=output of the unknown system;
%length(d)=length(x);
%M=number of coefficients of the Wiener filter;
%w=Wiener filter coefficients equal to M+1;
%jm=minimum mean square error; 
pdx=xcorr(d,x,M,'biased');
p=pdx(1,M+1:2*M+1);
rx1=xcorr(x,M,'biased');
rx=rx1(1,M+1:2*M+1);
R=toeplitz(rx);
w=inv(R)*p';
jm=var(d)-p*w;% var() is a MATLAB function;
By setting, for example, the following MATLAB procedure: x=randn(1,256); d=filter([0.95  0.25  -0.4],1,x); [w,jm]=sspwieneridentif(x,d,4);, we obtain w=[0.9497  0.2505  -0.3962  0.0031  0.0015], Jmin=0.0010. We note that, if we assume a larger number of filter coefficients than those belonging to the unknown system, the Wiener filter produces close approximate values to those of the unknown system and, for the rest, produces approximately zero values as it should.












▄

Example 5.4.3 (Noise canceling): In many practical applications there exists a need to cancel the noise added to a signal. For example, we are talking to the cell phone inside the car and the noise of the car, radio, conversation by other riders, etc. is added to the message we are trying to transmit. Similar circumstance appears when pilots in planes and helicopter try to communicate, or tank drivers try to do the same. Fig 5.4.3 shows pictorially the noise contamination situations. Observe that part of the noise is added to the signal to be transmitted and another component is entering the Wiener filter. Both components emanate from the same source but follow different paths in the same environment. This indicates that there is some degree of correlation between these two noises. It is assumed that the noises have zero mean values. The output of the Wiener filter will approximate the noise added to the desired signal and, thus, the error will be close to the desired signal. The Wiener filter in this case is 
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because the desired signal in this case is v1.

The individual components of the vector 
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Because d(n) and v2(n) are uncorrelated,
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since the noise has zero mean value. Therefore, (5.21)

 becomes
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To demonstrate the effect of the Wiener filter, let 
[image: image50.wmf]()0.98sin(0.2)

n

dnn

p

=

, 


[image: image51.wmf]1122

()0.85(1)()and()0.96(1)()

vnvnvnvnvnvn

=-+=--+

, where v(n) is white noise with zero mean value and unit variance. The correlation matrix 
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 are found using the sample biased correlation function. Fig 5.4.4 shows simulation results for three different-order filters using the Book MATLAB function given below.

Book MATLAB function for noise canceling: [d,w,xn]=ssp_wiener_noisecancelor(dn,a1,a2,v,M,N)
function[d,w,xn]=ssp_wiener_noise_cancelor(dn,a1,a2,v,M,N)
%[d,w,xn]=ssp_wiener_noise_cancelor(dn,a1,a2,v,M,N);dn=desired signal;
%a1=first order IIR coefficient,a2=first order IIR coefficient;
%v=noise;M=number of Wiener filter coefficients;N=number of sequence
%elemets of dn(desired signal) and v(noise);d=output desired signal;
%w=Wiener filter coefficients;xn=corrupted signal;en=xn-v1=d;
v1(1)=0;v2(1)=0;
for n=2:N
    v1(n)=a1*v1(n-1)+v(n-1);
    v2(n)=a2*v2(n-1)+v(n-1);
end;
v2autoc1=xcorr(v2,M,'biased');
v2autoc=v2autoc1(1,M+1:2*M+1);
xn=dn+v1;
Rv2=toeplitz(v2autoc);
p1=xcorr(xn,v2,'biased');
if M>N
    disp(['error:M must be less than N']);
end;
R=Rv2(1:M,1:M);
p=p1(1,(length(p1)+1)/2:(length(p1)+1)/2+M-1);
w=inv(R)*p';
yw=filter(w,1,v2);
d=xn-yw(:,1:N);












  ▄
Self-Correcting Wiener Filter (SCWF)

It is proposed to arrange the standard single Wiener filter in a series form, each one having fewer coefficients by comparison to one filter situation. This proposed configuration is shown in Fig 5.4.4. This configuration permits us to process the signal using filters with fewer coefficients, and permit us to stop at any desired stage, thus saving in computation.
Example 5.4.4 (Linear prediction for an AR process): Plot the signal and the predicted one using Wiener filter.
Solution: Consider the real-valued AR process of the second order
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where v(n) is noise with variance one and zero mean value. With the help of MATLAB and for N=200, we obtain
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Thus, the normal equations are
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Therefore, the predictor becomes
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The signal x(n) and the  predictor 
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 are shown in Fig 5.4.5 (in the figure 
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    ▄
Problems
 5.3.1 Verify (5.11)

.
5.3.2 Find Jmin using the orthogonality principle.
5.4.1 Find the cost function and the mean square error surface for the two systems shown in Fig P5.4.1. Given: E{s2(n)}=0.9, E{s(n)s(n-1)}=0.4, E{d2(n)}=3, E{d(n)s(n)}=-0.5 and E{d(n)s(n-1)}=0.9.

Hints-Solutions-Suggestions
5.3.1
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5.3.2
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. If the  coefficients have their optimum value, the orthogonality  principle states that  E{e(n)x(n-m)}=0 and, hence, 
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