

APPENDIX 1

SUGGESTIONS AND EXPLANATIONS
FOR MATLAB USE

	It is suggested that the reader, who does not have a lot of experience with MATLAB and before start using the text, goes over this appendix and tries to execute the presented material in MATLAB.

Creating a Directory
	It was found by the author that it is less confusing if for a particular project we create our own directory where our own developed MATLAB m-files are stored. However, any time we need anyone of these files, we must include the directory in the MATLAB path. Let assume that we have the following directory path: c:\ap\sig-syt\ssmatlab. The following two approaches we can use;

	>>cd ‘c:\ap\sig-syst\ssmatlab’
or
	>>path(path,’c:\ap\sig-syst\ssmatlab’)%remember to introduce the path any time 			%you start new MATLAB operations; the symbol % is necessary
 	% for the MATLAB to ignore the explanations;

The MATLAB files are included in ‘ssmatlab’ directory.

Help
	In case we know the name of a MATLAB function and we would like to know how to use it, we write the following command in the command window:

	>>help sin
or
	>>help exp
etc.
	For the case we want to look for a key word, we write:

	>>look for filter

Save and Load
	When we are in the command window and we have created many variables and, for example, we would like to save two of them in a particular directory and in a particular file, we proceed as follows:
	>>cd ‘c:\ap\matlabdata’
	>>save data1 x dt %it saves in the matlabdata directory the 			%file data1 having the two variables x and dt;

	Let’s assume now that we want to bring these two variables in the working space to use them. We first change directory, as we did above, and then we write in the command window:

	>>load data1

Then, the two variables will appear in the working space ready to be used.

MATLAB as Calculator

	>>pi^pi-10;
	>>cos(pi/4);

	>>ans*ans %the result will be because the 				%first output is eliminated, only the last output is 				%kept in the form of ans;

Variable Names

	>>x=[1 2 3 4 5];
	>>dt=0.1;
	>>cos(pi*dt);%since no assignment takes place there is no 					%variable;

Complex Numbers

	>>z=3+j*4;%note the multiplication sign;
	>>zs=z*z;%or z^2 will give you the same results;
	>>rz=real(z);iz=imag(z):%will give rz=3, and iz=4;
	>>az=angle(z); abz=abs(z);%will give az=0.9273 rad, and abz=5;
	>>x=exp(-z)+4;%x=3.9675+j0.0377;

Array Indexing

	>>x=2:1:6;%x is an array of the numbers {2, 3, 4, 5, 6};
	>>y=2:-1:-2:%y is an array of the numbers {2, 1, 0, -1, -2};
	>>z=[1 3 y];%z is an array of the numbers {1, 3, 2, 1, 0, -1, -				 %2};
		 %note the required space between array numbers;
	>>xt2=2*x;%xt2 is an array of numbers of x each one multiplied by 	 %2;
	>>xty=x.*y;%xty is an array of numbers which are the result of
		 %multiplication of corresponding elements, that is
		 % {4, 3, 0, -5, -12};

Extracting and Inserting Numbers in Arrays

	>>x=2:1:6;
	>>y=[x zeros(1,3)];%y is an array of the numbers {2, 3, 4, 5, 6, 				%0, 0, 0};
	>>z=y(1,3:7);%1 stands for row 1 which y is and 3:7 instructs to 				%keep columns
		 % 3 through 7 the result is the array {4, 5, 6, 0, 0};
	lx=length(x);%lx is the number equal to the number of columns of 				%the row vector x, that is lx=5;
	x(1,2:4)=4.5*(1:3);%this assignment substitutes the elements of x 		%at column
		%positions 2,3 and 4 with the numbers 4.5*[1 2 3]=4.5, 9,
		% and 13.5, note the columns of 2:4 and 1:3 are the same;
x(1,2:2:length(x))=pi;% substitutes the columns 2 and 4 of x with
	%the value of pi, hence the array is {2, 3.1416, 4,3.1416 6}
	
Vectorization

	>>n=0:0.2:1;
	>>s=sin(0.2*pi*n);% the result of these two commands gives the 			%signal s (sine function) at times (values of n) 0, 0.2, 		%0.4, 0.6, 0.4, 1;

This approach is preferable since MATLAB executes faster the the vectorization approach rather than the loop approach, which is

	>>s=[];% initializes all values of vector s to zero;
	>>for n=0:5% note that the index must be integer;
	>>s(n+1)=sin(0.2*pi*n*0.2);% since we want values of s every 0.2 				%seconds we must multiply n by 0.2; note also that
			%for n=0 the variable becomes s(1) and this
 	 %because the array in MATLAB always starts
			 %counting columns from 1;
	>>end;

The results are identical with the previous one;

Matrices

If a and b are matrices such that a is a 2x3 and b is 3x3 then c=a*b is a 2x3 matrix.

	>>a=[1 2; 4 6]; %a is a 2x2 matrix ;

	>>b=a’;%b is a transposed 2x2 matrix of a and is ;
	>>da=det(a);%da is a number equal to the determinant of a, da=-2;
	>>c=a(:);%c is a vector which is made up of the columns of a, 			 %c=[1 4 2 6];
	>>ia=inv(a); ia is a matrix which is the inverse of a;
	>>sa1=sum(a,1);%sa1 is a row vector made up of the sum of the 				%rows,sa1=[5 8];
	>>sa2=sum(a,2);%sa2 is a column vector made up by the sum of the 			%columns,sa2=[3 10]’;

Produce a Periodic Function
	>>x=[1 2 3 4];
	>>xm=x’*ones(1,5);%xm is 4x5 matrix and each of its column is x’;
	>>xp=xm(:)’;% xp is a row vector, xp=[x x x x x];

Script Files

	Script files are m-files that when introduce their names in the command window we receive the results. We must, however, have the directory that includes the file in the MATLAB search directories. You can modify the file any desired way and get new results. Suppose that any time we ask for the file pexp.m the magnitude and angle of the exponential function are plotted. To accomplice this, we first go to the command window and open a new m-file. At the window we type the file as shown below. As soon as we finished typing, we click on Save as and save the file in, say:c:\ap\ssmatlab. If we want to see the results, at the command window we just write: pexp and hit the enter key.

Script File pexp.m

	>>w=0:pi/500:pi-pi/500;%they are 500 at pi/500 appart;
	>>x=exp(j*w);ax=abs(x);anx=angle(x);
	>>subplot(2,1,1);plot(w,ax,’k’)%’k’ means plot line in black;
	>>xlabel(‘\omega rad/s’);ylabel(‘Magnitude’);
>>subplot(2,1,2);plot(w,anx,’k’);
>>xlabel(‘\omega rad/s’);ylabel(‘Angle’);

If we have the function and want to plot the results as above we substitute in the script file the function x with the function; x=2*exp(j*w)./(exp(j*w)-0.5);
In the above MATLAB expression note the dot before the slash. This instructs MATLAB to operate at each value of w separate and, thus, give results at each frequency point.

Functions
	We will present here an example of how to write functions. The reader should also study the functions which are presented through out the book. In Fourier series, for example, we have to plot functions of the form

	

and we want to plot this sum of cosines each one having different amplitude and frequency. Let A=[1 0.6 0.4 0.1], and . We approach this solution by vectorizing the summation. The MATLAB function is of the form

	function[s]=sumofcos(A,N,w0,rangeoft)
	n=0:N-1;
	s=A*cos(w0*n’*rangeoft)
%when we want to use this function at the command window to find s we write for %example:
%>>A=[1 0.6 0.4 0.1];N=4;w0=2;rangeoft=0:0.05:6;
%>>[s]=sumofcos(A,N,w0,rangeoft); at the enter key click the vector s is one of the %variables in the command window and it can be plotted at the wishes of the reader; we %must secure that the directory in which sumofcos function exists is in the MATLAB %path; after you type the function in the editing window you save as.. in the directory, for example, c:\ap\ssmatlab and filename: sumofcos.m

It is recommended that the reader set small numbers for N (N=4) and range of t (0:0.2:1) and produce first the matrix cos(w0*n’*t) and, then, see the result A*cos(w0*n’*t).

Complex Expressions
	
We can produce results by writing for example

>>x=[1 3 1 5 3 4 5 8];
>>plot(abs(fft(x,256)),’r’);%will plot in red color the spectrum of the
				 %vector x of 256 points;

Axes

>>axis([xmin xmax ymin ymax]);%sets the max and min values of the axes;
>>grid on;%turns on grid lines in the graph;

2-D Graphics

To plot a sine and a cosine signal

>>x=linspace(0,2*pi,40);%produces 40 equal spaced points between 0 and

 %2;
>>y=sin(x);plot(x,y,’r’);%will plot the sine signal with color red;
>>y1=cos(x);plot(x,y1,’g’);%will plot the cosine signal with color
 %green;

For other color lines: ’y’=yellow,’c’=cyan,’b’=blue,’w’=white,’k’=black

Type of lines :’g:’=green dotted line,’r--’=red dashed line,’k--x’=black
 dashed line with x’s,’k-.’=black dash-dot line,’+’=plus
 sign,’ko’=black circles

Add Greek Letters:\omega=will produce Greek lower case omega,\Omega=
 will produce capital case Greek omega. The same is true for
 the rest of the Greek letters. For example if we want to 			write the frequency in a figure under the x-axis, in the 			command window we wite:>>xlabel(‘\omega rad/s’);. For an 			omega with a subscript 01 we write:
		>>xlabel(‘\omega_{01} rad/s’);
Add grid lines:>>grid on;%this is done after the command plot;
Adjusting axes: >>axis square;%sets the current plot to be square rather 			%than the default rectangle;
		>>axis off;%turn off all axis labeling, grid,and tick 			%marks;leave the title and any labels placed by the ‘text’ 			%and ‘gtext’ commands;
		>>axis on;%turn on axis labaling,tick marks and grid;
		>>axis([xmin xmax ymin ymax]);%set the maximum and 				%minimum values of the axes using values given in the row 			%vector;
Subplots (Example):>>n=0:100;x=sin(n*pi*n);y=cos(n*pi*n);z=x.*y;w=x+y;
		%subplot(2,2,1);plot(n,x);subplot(2,2,2);plot(n,y);
		%subplot(2,2,3);plot(n,z);subplot(2,2,4);plot(n,w);
Log plotting: >>semilogx(x);%will plot the vector x in log scale in x-axis
		%and linear scale in y-axis;
	 >>semilogy(x);%will plot the vector x in log scale in y-			%direction and linear scale in the x-axis;
	 >>loglog(x);%will plot the vector x in log scale both axes;
Histogram: >>x=randn(1,1000);hist(x,40);colormap([0 0 0]);%will plot a 			Gausian histogram of 40 bars white;if instead we entered 			the vector [1 1 1] the bares would be black;the vector
		[1 0 0] will give red and the vector [0.5 0.5 0.5] will 			give gray;
 >>x=-3.0:0.05:3;y=exp(-x.*x);bar(x,y);colormap([.5 .5 .5]); 			%will produce bar-figure of the bell curve with gray color;
 >>sairs(x,y,’k’);%will produce a stair-like black curve;
Add words: >>gtext(‘the word’);
After the return, the figure will appear and a cross-hair. Move the center at the point in the figure where the word must start and click.
Add legend : >>plot(x1,y1,’+’,x2,y2,’*’);%there will be two curves in the 						 %graph;
	 >>legend(‘Function 1’,’Function 2’);

The following rectangle will appear in the figure:

3-D Plots

Mesh-Type Figures

If , for example, we desire to plot the function in the ranges , we proceed as follows:
	>>x=-2:0.1:2;y=-2:0.1:2;[X,Y]=meshgrid(x,y);
	>>f=exp(-(X.*X+Y.*Y));mesh(X,Y,f);colomap([0 0 0]);
The above commands will produce a mesh-type 3-d figure with black lines.

GENERAL PURPOSE COMMANDS

Managing Commands and Function
help		On line help for MATLAB functions and m-files e.g. >>help plot
path		Shows the path to MATLAB directories which are available at the 				command window
Managing Variables and the Workplace
clear		Removes all the variables and items in the memory. Let assume that the 			memory contains the variables x,y,z then >>clear x z; only y will remain 			in the memory
length		A number that gives the length of a vector. >>x=[1 3 2 5]; then 				>>length(x); will give the number 4. If we write >>y=length(x); then the 			variable y is equal to 4.
size		Array dimensions. >>x=[1 3 2 5]; then size(x) will give the numbers 1 4 			which means 1 row and 4 columns. Let write>>x=[1 2; 3 5; 6 4]; then 			size(x) will give the numbers 3 2, which means that x is a matrix of 3x4 			dimensions
who		Produces a list of the variables in the memory
format		This command is used as follows for display:>>format short,pi; will 			produce the number 1.1416, >>format long,pi; will produce the number 			3.14159265358979, >>format long,single(pi); will produce the number 			3.1415927

OPERATORS AND SPECIAL CHARACTERS

Operators and Special Characters
+		Plus
-		Minus
*		Number and matrix multiplications
.*		Array multiplication.>>x=[1 2 3];y=[2 3 4];z=x.*y; hence z=[2 6 12]
.^		Array power. >>x=[2 3 4];y=x.^3; hence y=[8 27 64]. >>x=[2 4;1 5]; 			y=x.^2; hence y=[4 16;1 25]
/		Right division
./		Array division. >>x=[2 4 6];y=[4 4 12];z=x./y; hence z=[0.5 1 0.5]
:		Colon. >>x=[1 3 6 2 7 8];y=x(1,3:6); hence y=[6 2 7 8]
.		Decimal point
…		Continuation.>> x=[1 4 6 7 8 9 …
		 >>2 5 8 1]; The vector x is interpreted by MATLAB as a row 				vector having 10 elements
%		Comments. >>x=[1 4 2 6];%this is a vector. MATLAB ignores ‘this is a 					vector’	

‘		Transpose of a matrix or vector.>>x=[2 6 3]; y=x’; will have
&		Logical AND
|		Logical OR	
~		Logical NOT
xor		Logical exclusive (XOR)

Control Flow
for		Repeat statements a specific number of times.
		>>for n=0:3;
		>> x(n+1)=sin(n*pi*0.1);%observe the n+1 , if the +1 was not there x(0)
		>>end; %was not defined by MATLAB
		Then x=[0 0.3090 0.5878 0.8090]
		>>for n=0:2
		>> for m=0:1
		>> x(n+1,m+1)=n^2+m^2;
		>> end;
		>>end;

		Then
while		Repeat statements an indefinite times of times.
		>>a=1;num=0;
		>>while (1+a)<=2 & (1+a)>=1.0001
		>>a=s/2;
		>>num=num+1;
		>>end;
		We obtain a=0.0001, and num=14
if		Conditionally execute statements.
		if expression
			commands evaluated if true
		else
			commands evaluated if false
		end
If there are more than one alternative, the if-else-end statement takes the form
elseif		
		if expression1
			commands evaluated if expression1 is true
		elseif expression2
			commands evaluated if expression2 is true
		elseif ….
		.
		.
		.
		else
			commands evaluated if no other expression is true
		end

ELEMENTARY MATRICES AND MATRIX MANIPULATION

Elementary Matrices and Arrays
eye(n,n)	Identity matrix (its diagonal elements are 1 and all the others are 0
linspace	linspace(x1,x2) generates 100 equally spaced points between x1 and x2.
		Linspace(x1,x2,N) generates N equally spaced points between x1 and x2
ones		ones(1,5) generates a row vector with its elements only ones
		ones(2,4) generates a 2x4 matrix with all its elements ones
rand		Uniformly distributed random numbers. >>x=rand(1,5); x is a row vector 			of 5 elements of random numbers. >>x=rand(2,3); x is a 2x3 				matrix whose elements are random numbers
randn		Normally distributed random numbers. Applications are similar to rand 			above
zeros		Creates arrays and matrices of all zeros.>>x=zeros(1,4); x is a row vector 			of 4 elements all with zero value. >>x=zeros(3,4); x is a 3x4 matrix with 			all of its elements zero
: (colon)	Regularly spaced vector. >>x=[1 4 2 5 8 3];y=x(1,3:6); hence y=[2 5 8 3];
eps		Floating-point relative accuracy. To avoid NA response in case there 			exist a zero over zero expression at a point, as in the sinc function, we 			for example write:>> n=-4:4;x=sin(n*pi*.1)./((n*pi+eps);
i,j		Imaginary unit
pi		Ratio of a circle’s circumference to its diameter

Matrix Manipulation
 diag		Diagonal matrices and diagonals of a matrix. >>x=[1 3 5;2 6 9;4 7 0]; 			y=diag(x); will give a column vector y=[1 6 0]T. >>y1=diag(x,1); will give 		a column vector y1=[3 9]T which is the diagonal above the main diagonal.
		>>y2=diag(x,-1); will give the column vector y2=[2 7] which is the 			diagonal just below the main diagonal
		y3=diag(diag(x)); will give a 3x3 matrix with the diagonal 1,6,0 and the 			rest of the elements zero
fliplr		Flips vectors and matrices left-write
flipud		Flip matrices and vectors up-down	
tril		Lower triangular part of a matrix including the main diagonal and the rest 			are zero. If x=[1 3 5;2 6 9; 4 7 0] then y=tril(x) is the matrix [1 0 0;3 6 0;4 			7 0]
triu		Upper triangular part of a matrix
toeplitz		Produces a Toeplitz matrix given a vector. >>x=[1 5 2];y=toeplitz(x) 			produces the matrix y=[1 5 2;5 1 5;2 5 1]

ELEMENTARY MATHEMATICS FUNCTION

Elementary Functions
abs		Absolute value of a number and the magnitude of a complex number
acos,acosh	Inverse cosine and inverse hyperbolic cosine
acot, acoth	Inverse cotangent and inverse hyperbolic cotangent
acsc,acsch	Inverse cosecant and inverse hyperbolic cosecant
angle		Phase angle of a complex number. angle(1+j)=0.7854
asec,asech	Inverse secant and inverse hyperbolic secant
asin,asinh	Inverse sine and inverse hyperbolic sine
atan,atanh	Inverse tangent and inverse hyperbolic tangent
ceil		Round toward infinity. For example, ceil(4.22)=5
conj		Complex conjugate. conj(2+j*3)=2-j*3
cos,cosh	Cosine and hyperbolic cosine
cot,coth	Cotangent and hyperbolic cotagent
csc,csch	Cosecant and hyperbolic cosecant	
exp		Exponential. For example, exp(-1)=1/e=0.3679
fix		Rounds towards zero. For example, fix(-3.22)=-3
floor		Round towards minus infinity. For example, floor(-3.34)=-4, and 				floor(3.65)=3
imag		Imaginary part of a complex number. For example, imag(2+j*5)=5
log		Natural logarithm. For example, log(10)=2.3026
log2		Based 2 logarithm. For example, log2(10)=3.3219
log10		Common (base 10) logarithm. For example, log10(10)=1
mod		Modulus (signed remainder after division). For example, mod(10,3)=1, 			mod(10,4)=2. In general mod(x,y)=x-n*y
real		Real part of complex number
rem		Remainder after division. For example, rem(10,3)=1,rem(10,5)=0, 				rem(10,4)=2
round		Round to the nearest integer. For example, round(3.22)=3, round(3.66)=4
sec,sech	Secant and hyperbolic secant
sign		Signum function. sign(x)=0 for x=0, sign(x)=1 for x>0 and sign(x)=-1 for 			x<1
sin,sinh	Sine and hyperbolic sine
sqrt		Square root e.g. sqrt(4)=2
tan,tanh	Tangent and hyperbolic tangent
erf,erfc		Error and co-error function
gamma		Gamma function, e.g. gamma(6)=120 or 1*2*3*4*(6-1)=120

NUMERICAL LINEAR ALGEBRA
Matrix Analysis
det		Matrix determinant >>a=[1 2; 3 4];det(a)=1x4-2x3=-2
norm		The norm of a vector e.g. norm(v)=sum(abs(v).^2)^(1/2)
rank		Rank of a matrix. Rank(A) provides the number of independent columns 			or rows of matrix A		
trace		Sum of the diagonal elements e.g. trace([1 3; 4 12])=13
eig		Eigenvalues and eigenvectors. >>[v,d]=eig([1 3;5 8]); Therefore

		
inv		Matrix inversion, e.g. >>A=[1 3;5 8];B=inv(A); Therefore,

		

DTA ANALYSIS
Basic Operations	
max		Maximum element of an array. >>v=[1 3 5 2 1 7];x=max(v); Therefore, 			x=7
mean		Average or mean value of an array e.g. mean([1 3 5 2 8])=19/5=3.8
median		Median value of an array e.g. median([1 3 5 2 8])=3
min		Minimum element of an array
sort		Sorts elements in ascending order e.g. sort([1 3 5 2 8])=[1 2 3 5 8]
std		Standard deviation
sum		Sum of an array elements e.g. sum([1 3 5 2 8])=19

Filtering-Convolution
conv		Convolution and polynomial multiplication e.g. conv([1 1 1])=[1 2 3 2 1], 			if we have to multiply these two polynomials (x2+2x+1)*(x+2) we 				convolve their coefficients conv([1 2 1],[1 2])=[1 4 5 2] therefore we write 		the polynomial x3+4x2+5x+2	
conv2		Two-dimensional convolution
filter		Filter data with infinite impulse response (IIR) or finite impulse (FIR) 			filter. Let the FIR filter be given by y(n)=0.8x(n)+0.2x(n-1)-0.05x(n-2). 			Let the input data are x=[0.5 -0.2 0.6 0.1]. Hence, a=[1], b=[0.5 0.2 -			0.05] and the output is given by y=filter(a,b,x). The result is: y=[0.6250 -			0.4063 0.8906 -0.1230].

Fourier Transforms
abs		Absolute value and complex magnitude e.g. abs(4+j*3)=5, abs([-0.2 			3.2])= [0.2 3.2]
angle		Phase angle e.g. angle(4+j*3)=0.6435 in radians
fft		One-dimensional fast Fourier transform. >>x=[1 1 1 0]; y=fft(x); . Hence, 			y=[3 0-1.0000i 1.0000 0+1.0000i]. If we had written z=fft(x,8) we 			would have obtained z= [3 1.7071-1.7071i 0-1.0000i 0.2929+0.2929i 1 			0.2929-0.2929i 0+1.0000i 1.7071+1.7071i]
fft2		Two-dimensional fast Fourier transform
fftshift		Shift DC component of fast Fourier transform to center of spectrum. For 			example, we write in the command window:>> x=[1 1 1 1 1 			 …0];y=fft(x,256); Then the command plot(abs(fftshift(y))) will center the 			spectrum. We can also write: plot(abs(fftshift(fft(x,256))))
ifft		Inverse one-dimensional fast Fourier transform
ifft2		Inverse two-dimensional fast Fourier transform

TWO- AND THREE-DIMENSIONAL PLOTING

Two-Dimensional Plots
 plot		Linear plot. If we have three vectors of equal length such as x with 				numbers of equal distance, y and z, we can create the following simple 			plots: plot(y) will plot the values of y at numbers 1, 2, … in the x-				direction, plot(x,y) will plot the y values versus the equal-distance values 			of the vector x in the x direction, plot(x,y,x,z) will plot both vectors y and z 		on the same graph, we can plot the two vectors by writing >>plot(x,y); 			hold on;plot(x,z); if we would like the second graph to have different color 		we write plot(x,z,’g’) for green color
loglog		Log-log scale plot. For example loglog(y) will produce the plot
semilogx	Semi-log scale plot. The log scale will be on the x axis and the linear scale 		on the y axis. The plot is accomplished by writing semilogx(y)	
semilogy	Semi-log scale plot. The log scale will be on the y axis and the linear scale 		on the x axis. The plot is accomplished by writing semilogy(y)
axis		Controls axis scaling. For example, if we want the axes to have specific 			ranges, we write after we created a plot using the MATLAB default 			axis([minx maxx miny max])
grid		Grid lines. After we created the plot then we write: grid on
subplot		Create axes in tiled positions. For example, when we write subplot(3,1,1) 			we expect 3x1 plots in one page starting plot one. Next we write 				subplot(3,1,2) and then proceed to plot plot the second plot etc. If we write 		subplot(3,2,1) 	we expect 3x2=6 plots on the page. After we write 				subplot(3,2,1) we proceed to plot the first of the 3x2 matrix format plots. 			For example, if we write subplot(3,2,2) and proceed to plot the figure we 			create a plot at line two and the second plot.
legent		Graph legend. For example, if we have two lines on the plot, one red and 			one green, and write legend(‘one’,’two’), then a rectangle frame will 			appear on the graph with a red line and the letters one and under a green 			line with the letters two
title		Graph title. For example, if we write title(‘This is a graph’) then the script 			in parenthesis will appear on the top of the graph
xlabel		X-axis label. For example, if we write xlabel(‘n time’) the n time will 			appear under the x-axis	
gtext		Place text with mouse. After we have created a plot, if we write in the 			command window gtext(‘this is the 1st graph’) at the return a cross hair 			will appear on the graph and at the click the phrase in parenthesis will 			appear on the graph

20

oleObject2.bin

image3.wmf
14

26

éù

êú

ëû

oleObject3.bin

image4.wmf
j

e

w

oleObject4.bin

image5.wmf
2

0.5

j

j

e

e

w

w

-

oleObject5.bin

image6.wmf
0

0

()cos

N

n

n

stAnt

w

=

=

å

oleObject6.bin

image7.wmf
0

2

w

=

oleObject7.bin

image8.wmf
04

t

££

oleObject8.bin

image9.wmf
p

oleObject9.bin

image10.wmf
Function1

*Function2

+

oleObject10.bin

image11.wmf
22

()

()

xy

fxe

-+

=

oleObject11.bin

image12.wmf
22,22

xy

-££-££

oleObject12.bin

image13.wmf
2

6

3

y

éù

êú

=

êú

êú

ëû

oleObject13.bin

image14.wmf
01

12

45

x

éù

êú

=

êú

êú

ëû

oleObject14.bin

image15.wmf
0.86750.32530.72020

,

0.49740.945609.7202

vd

éùéù

==

êúêú

-

ëûëû

oleObject15.bin

image16.wmf
1.14290.42861.00000

,*

0.71430.142901.0000

BAB

-

éùéù

==

êúêú

-

ëûëû

oleObject16.bin

image1.wmf
(2/2)(2/2)1/2

´=

oleObject1.bin

image2.wmf
12

46

éù

êú

ëû

