
APPENDIX 3

LANGRANGE MULTIPLIER METHOD

To solve a constrained optimization problem, the Langrange method is used. The normalized 
LMS recursion, for example, can be obtained as a solution to the following problem:

         minimize  subject to constraint d(n)=wT(n+1)x(n)
	The first step in the solution is to write the cost function as follows:

		
Differentiating the cost function above with respect to w(n+1), we obtain

		
Setting the results to zero results in

[bookmark: ZEqnNum207739]		
Substituting this result into the constraint  d(n)=wT(n+1)x(n), we obtain

[bookmark: ZEqnNum616134]		
Since e(n)=d(n)-wT(n)x(n), solving  for λ leads to

[bookmark: ZEqnNum780252]		
Substituting  in , we find

[bookmark: ZEqnNum690676]		
  Finally, introducing a factor µ in  to control the change in the weight vector, we obtain the conventional normalized LMS (NLMS) algorithm
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