
Chapter 1


Fourier Analysis of Signals


1.1  Introduction

One of the most fundamental information of any signal is its cyclic or oscillating activity. Our main interest is to determine the sinusoidal components of the signal, the range of their amplitude and frequency values.
Fourier analysis provides us with different tools, which are appropriate for particular type of signals. If the signal is periodic and deterministic, we use Fourier series analysis. If the signal is finite and deterministic, we use the Fourier transform. For discrete time signals the discrete Fourier transform is used, whereas the random signals need special approaches for their frequency content determination. Fig 1.1.1 shows a deterministic periodic, a deterministic finite and a random signal. 

1.2  Fourier Transform (FT)



The Fourier transform is used to find the frequency content of those signals that, at least, satisfy the Dirichlet conditions, which are: a) the signal has finite values of its maximum and minimum within a finite interval, b) the signal has finite number of discontinuities and c) . The Fourier transform pair is (=2πf has units in rad/s and f is the frequency having units cycles/s=Hz)

[bookmark: ZEqnNum779473]		

		

During the integration process we treat the imaginary factor as a constant. Some common Fourier transform pairs of time functions are given in Appendix 1.1 at the end of this chapter.

Example 1.2.1 To find the Fourier transform of f(t)=exp(-t)u(t), we use . Hence,




where  is the magnitude spectrum and  is the phase spectrum. Fig 1.2.1 shows graphically the two spectra. For this case, the frequency range is from minus infinity to infinity (radians per seconds). The function u(t) is known as the unit step function and is defined as follows:


		

    ▄
Note: The Fourier transform operation on a deterministic continuous signal in the time domain transforms it to a continuous signal in the frequency domain. We must have in mind that only the positive frequencies are physically realizable. Negative frequencies are involved to complete mathematical operations in complex format.


1.3 The Sampling of Signals



Mathematically, the sampling of signals is accomplished by multiplying the signal with the  function. This function is made up of delta functions, equally spaced apart, with the range, . Fig 1.3.1-a shows a continuous signal, Fig 1.3.1-b shows the combT function, and Fig 1.3.1-c shows the resulting sampled function. In the figure, the comb function extends from minus infinity to infinity and the function extends from zero to infinity. Therefore, the sampled function is given by

		.
	The sampling process is based on the delta function properties, which are:

		


            We can also represent the delta function by sequences which tent to a delta function as . The Table 1.3.1 below gives such sequences.




Table 1.3.1: Sequences defining the delta function
--------------------------------------------------------------------------------------------------------



Since we are always forced to sample continuous functions to be processed by computers, it is natural to ask the question if the spectrum of the original signal is modified or not by the sampling process. Hence, we write
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The  is an infinity set of delta functions being apart by the sampling frequency ωs, and the function  (see Prob 1.3.1) is the Fourier transform of the combT(t) function. The symbol “*” indicates convolution of functions. The above expansion is based on the Fourier transform property which states (see Appendix 1.2): the Fourier transform of the product of two functions is equal to the convolution of their Fourier transforms divided by . The convolution of  any two functions is defined as follows:

		
To find the convolution of two functions in the time domain, for example, we first define another domain, say x. Next, we substitute the variable t in one of the functions with the new variable x, f(x). The function is identical in the x-domain as it was in the time domain. Next, in the other function wherever we see the variable t we substitute it with the variable (t-x). This transformation creates a function in the x-domain which is a flipped version of that in the time domain and shifted by an amount t. Then we multiply these two functions and integrate. The area under the new function f(x)h(t-x) is the value of the output g(t) at time t. By changing the time t from minus infinity to infinity we obtain the output of the convolution process, which is the function g(t). Of course, the infinitesimal shifting is done automatically during integration.

Example 1.3.1: The convolution of the two signals f(t)=exp(-t)u(t) and h(t)=u(t) is equal to

		



The functions in the t- and x-domain are shown in Fig 1.3.2. Note that the first function is reproduced in the x domain by simply substituting t with x. In the second function we substituted t with t-x. Since we integrate with respect to x, the substitution produces a function that is reflected along the ordinate axis and is shifted by t. The value of t varies from minus infinity to infinity. The limits of the second integral are defined by applying the properties of the unit step function. u(x) is equal to zero for x<0 and equal to 1 for x>0. Since u(t-x) is flipped, it is equal to zero for x>t and equal to one for x<t. Therefore, the integration takes place within the range where the two functions are overlapped. For this case we observe two ranges of t. The first range is , and the two functions do not overlap and, hence, g(t)=0. In the other range, , the overlap is between 0 and t and, thus, the convolution integral is equal to g(t)=1-exp(-t), .
											    ▄
Lets investigate the convolution between a shifted delta function and another continuous function f(t). By definition we write

		
The integration was performed using the delta function property, which states: instead of performing integration, we first find the point where the delta function is located on the x-axis and this value is introduced into the rest of the functions contained in the integrand. 

Note: The convolution of a shifted delta function with any other function produces that function exactly but shifted by the amount the delta function was initially shifted.


	  Returning back to , and remembering the properties of the convolution of a function with a delta function, we observe that the spectrum of the sampled function Fs(ω) is the sum of an infinite number of the spectrum of the function f(t), F(ω), each one shifted by the sampling frequency . Fig 1.3.3 shows the spectrum of a function f(t) and the spectrum of its sampled form fs(t) using only three replicas and 30 rad/s sampling frequency. From Fig 1.3.3 we note that if the sampling frequency increases, equivalently when the sampling time decreases, the spectrums are spreading more and more apart so that only negligible overlapping occurs; this gives us the opportunity to recover a close approximation of the original signal. Because the spectrum of a finite-time function is infinite, it is impossible to recover the total signals spectrum and, thus, always we will recover a distorted one. The sampling theorem defines the conditions under which the signal can be recovered without distortion. The theorem states:





Sampling Theorem: For any band-limited signal, with its highest frequency ( Nyquist frequency ), can be recovered completely from its sampled function if the sampling frequency is at least twice the Nyquist frequency , or the sampling time must be at least half the Nyquist sampling time . 


1.4 Discrete-Time Fourier Transform (DTFT)


At the limit as , we can approximate the Fourier integral as follows (see Pr 1.4.1):
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Since , this result indicates that the spectrum of the sampled function with sampling time T is periodic with period 2π/T. Therefore, the inverse DTFT is given by
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and, hence,  and  constitute the DTFT pair.


Example 1.4.1 Find and plot the magnitude of the DTFT spectrum for the sequence f(n)=0.9nu(n).
Solution: Using  with T=1, we obtain the spectrum

		


 which is given in the polar form, amplitude and phase spectra. The expansion of the summation indicates that it is a geometric infinite sequence of the form (1+x+x2+x3+…) =1/(1-x). The sampling frequency in this case is 2π/1. The magnitude of the spectrum is shown in Fig 1.4.1. Note the periodicity of the spectrum. Mathematics inform us that to have a convergence sequence and be able to sum the above infinite series the absolute value of   must be less than one, or , which verifies the requirement .
	                                                                                                                                            ▄


Note: The signal is discrete in the time domain and its DTFT is a continuous function of in the frequency domain and it is periodic.

1.5 The Discrete Fourier Transform (DFT)



With the development of an efficient computational procedure, known as the Fast Fourier Transform (FFT), the DFT is used extensively. As a practical matter, we are only able to manipulate a certain length of a discretized continuous signal. That is, suppose that the data sequence is available only within a finite time window from n=0 to n=N-1. The transform of the discrete signal is also discrete having the same N values. The samples in the frequency domain are located at intervals of  apart, where T (sampling time) is the time interval between sample points in the time domain. Hence, we define the DFT of a sequence of N samples, {f(nT)} for , by the relation
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 where

                     N=number of sample values
                      T=sampling time interval or sampling time (time bin)
             (N-1)T=signal length

                 =the frequency sampling interval (frequency bin)

                  =sampling frequency

          =Nth principal root of unity


Note: With this specification of the DFT and , there are only N distinct values computable by .

	The inverse discrete Fourier transform (IDFT) is given by the relation
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It turns out that both sequences are periodic with period N. This stems from the fact that the exponential function is periodic as shown below

		
 
1.5.1 Properties of the DFT

To simplify the proofs, without any loss of generality, we set T=1 and k2π/N=k.

Linearity 
The DFT of the function f(n)=ax(n)+by(n) is

		
This property is the direct result of .

Symmetry
If f(n) and F(k) are a DFT pair, then (see Prob 1.5.1)

		

Time Shifting
For any real integer m (see Prob 1.5.2)
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The above equation indicates that, if the function is shifted in the time domain by m units of time to the right, its spectrum magnitude does not change. However, its phase spectrum is changing by the addition of a linear phase factor equal to . 

Frequency Shifting
For any integer m (see Prob 1.5.3)
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Time Convolution
The discrete convolution is defined by the expression 
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where both discrete signals are periodic with the same period N

		
This type of convolution is known as circular or cyclic convolution. The DFT of the convolution expression yields (see Prob 1.5.4)

		


Fig 1.5.1 shows graphically the convolution of the following two periodic sequences, f(n)={1, 2, 3} and h={1, 1, 0}. Fig 1.5.1a shows the two sequences at 0 shifting and the result is given by the sum of the products: . Next we shift the inside circle by one step counterclockwise and the output is given by the sum of the following products:  and so on. Note that y(n) is periodic and, since F(k) and H(k) are periodic, Y(k) is also periodic. 
	Another approach to the evaluation of circular convolution is based on . This equation can be written in the form given below for the particular case when each sequence has three terms.

		
This set of equation can be written in matrix form as follows

		
If we want to produce a linear convolution, using the matrix format, we must pad with zeros the sequences so that their total length must be equal to N=F+H-1, where F and H are the number of elements of the corresponding sequences.

Example 1.5.1 Consider the two periodic sequences f(n)={1, -1, 4} and h(n)={0, 1, 3}. Verify the convolution property for n=2.
Solution: In this case T=1, Ωb=2π/3 and 


. First we find the summation: . Next, we obtain F(k) and H(k) 






Similarly, we obtain


The second summation given above becomes


This result shows the validity of the DFT of the convolution.
	                                                                                                                                  ▄

Frequency Convolution

The frequency convolution property is given by (see Prob 1.5.5)

		
where g(n)=f(n)h(n).

Parseval’s Theorem


		

1.5.2 The Effect of Sampling Time T 

Let’s deduce the DFT of the continuous function

	
for the following three cases:
a. T=0.5, NT=8
b. T=0.5, NT=16
c. T=0.1, NT=8



Case a: In this case we find N=8/T=8/0.5=16 and . The fold over frequency for this case is at N/2=8, or at  rad/s. The Fourier amplitude spectrums for the continuous and discrete case are shown in Fig 1.5.2a. The exact spectrum is found to be equal to: . Although the spectrum of the continuous signal is continuous and infinite in length, we only present the values which correspond to the spectrum of the discrete case. We observe that the errors between these two spectrums are considerable up to the fold over frequency, and these errors become larger for the rest of the range. The MATLAB program given below was used to find the exact and DFT magnitude values of the spectrum and were plotted in Fig 1.5.2a. Note that the number of function values used in the calculations were three, {f(0), f(0.5), f(1)}. However, since N=16 the MATLAB function fft(.) added 13 zeros, thus creating a vector with 16 values. The m-file below produces Fig 1.5.2a. Similarly, we can graph b) and c) graphs.

Book MATLAB m-file:eff_sampl_time


%Book m-file:eff_sampl_time
w1=0:pi/4:4*pi-(pi/4);
fw1=abs((1-exp(-(1+j*w1)))./(1+j*w1));%abs(.) is a MATLAB function;
t1=0:0.5:1;
ft1=exp(-t1);
dft1=0.5*abs(fft(ft1,16));%fft(.) is the fast Fourier transform MATLAB function;
subplot(3,1,1);stem(w1,dft1,'k');% ‘k’ instructs MATLAB to produce a black graph;
hold on; plot(w1,fw1,'.k', 'markersize', 15);% ‘.k’ produces black dots of magnitude 15;
xlabel('\omega rad/s');ylabel('Magn: F(\omega), F(\Omega_b)');

Calling the m-files: eff_sampl_time_1 and eff_sampl_time_2 will produce the b) and c) parts of the Fig 1.5.2 corresponding to case b) and c) discussed below.

Case b: In this case we do not change the sampling time, T=0.5, but we double the number NT=16. From these data we obtain N=32. Hence, the folding over frequency is 16x2π/16=2π, which is identical to that found in Case a) above. Therefore, the discrete spectrum is periodic having period 2π. We observe in Fig 1.5.2b that although we doubled NT, doubling the number of points in the frequency domain for the same range of frequencies, the accuracy of the discrete spectrum has not improved and, in the same time, the largest frequency which approximates the exact spectrum is the same, π/0.5=2π. To plot the figure is easily done by a slight change of the program given above. 

Case c: In this case NT=8, but the sampling time was decreased to 0.1 value. This decrease of sampling time resulted in the increase of function sampling points from 3 to 11. From Fig 1.5.2c we observe that the accuracy has increased and the approximation to the maximum frequency has also increased to π/0.1=10π. The frequency bins are equal to 2π/8=π/4 and the fold over frequency is equal to (π/4)40=10π. The total number of points were N=8/0.1=80.


NOTE: Based on the above results we conclude: a) Keeping the sampling time T constant and increasing the number of values of the sampled function by padding it with zeros increases the number of frequency bins and, thus, making the spectrum better defined but its accuracy does not increase. b) Decreasing the sampling time T results in better accuracy of the spectrum. It further extends the range in simulating the exact spectrum using the DFT approach and this range is .

1.5.3 The Effect of Truncation


Because the DFT uses finite number of samples, we must be concerned about the effect that the truncation has on the Fourier spectrum, even if the original function extends to infinity. Specifically, if the signal f(t) extends beyond the total sampling period NT, the resulting frequency spectrum is an approximation to the exact one. If, for example, we take the DFT of a truncated sinusoidal signal, we find that the Fourier transform consists of additional lines that are the result of the truncation process. Therefore, if N is small and the sampling covers neither a large number nor an integral number of cycles of the signal, a large error in spectral representation can occur. This phenomenon is known as leakage and is the direct result of truncation. Since the truncated portion of the signal is equal to f(t)pa(t), the distortion is due to the presence of the rectangular window. This becomes obvious when we apply the Fourier transform property: . This expression indicates that the exact spectrum is modified due to the convolution operation. It turns out that as the width of the pulse becomes very large, its spectrum resembles a delta function and, hence, the output of the convolution is close to the exact spectrum. Fig 1.5.3I and Fig 1.5.3II present pictorially the effect of truncation. In Fig 1.5.3I-c the resulting spectrum shows the largest undulations because the rectangular window is the shortest. As the window becomes wider, its effect during the convolution becomes less important. Fig 1.5.3II is the spectrum of the rectangular window for length 1.2 s. The spectrums were plotted in continuous format for better visualization. Based on the above analysis, a question arises. Are any other types of windows which may distort less the signal spectrum? Table 1.5.1 includes some other proposed windows.


Table 1.5.1 Windows in the Time Domain
------------------------------------------------------------------------------------------------------------
Data Window                                                                                      
                                                                                                                     
------------------------------------------------------------------------------------------------------------
Rectangular


								

Triangular-Bartlett


						

Blackman


			 					

Hamming


								

Hanning-Tukey


								

cosα(.) Window



	     

Kaiser-Bessel Window


	
------------------------------------------------------------------------------------------------------------


1.5.4 Windowing.

The reader must run a few examples using different types of windows. In the same time the reader should also find the spectrums of the windows and get familiar with level of their side-lobes and, in particular, the level of the first side-lobe. The plots should be done in a log-linear scale. Furthermore, the width of the main lobe plays an important role during the convolution process in the frequency domain. The thinner the main lobe is the better approximation we obtain of the desired spectrum. Both, the main lobe and the level of the first side-lobe play an important role in the attempt to produce the smallest distortion of the spectrum of the truncated signal.

1.6 Resolution


One interesting question is about the ability to resolve two frequencies which are close together. The main lobe of the window plays an important effect in the resolution of frequencies. Fig 1.5.4 shows the effect of the window that affects the resolution. The function we used was: . The resolution is understood by comparing the values Δω with the unit bin in the frequency domain, which is equal to 2π/NT. In this case we used T=1. In Fig 1.5.4a we find that (0.45-0.4)π<< 2π/16 and it is obvious that the two closed spaced frequencies can not be resolved. In Fig 1.5.4b we find that 0.05π is about equal to 2π/32, and it is apparent that a separation of the two frequencies starting to be resolved. However, in the third case where 0.05π>> 2π/128, the resolution is perfect. The Book MATLAB m-file below plots Fig 1.5.4.

Book MATLAB m-file: non_rand_resolu

%resolution m-file: non_rand_resolu.m
n1=0:15;
f1=cos(0.2*pi*n1)+cos(0.4*pi*n1)+cos(0.45*pi*n1);
n2=0:31;
f2=cos(0.2*pi*n2)+cos(0.4*pi*n2)+cos(0.45*pi*n2);
n3=0:127;
f3=cos(0.2*pi*n3)+cos(0.4*pi*n3)+cos(0.45*pi*n3);
ftf1=fft(f1,128);ftf2=fft(f2,128);ftf3=fft(f3,128);
w=0:2*pi/128:2*pi-(2*pi/128);
subplot(2,3,1);plot(w,abs(ftf1),'k');xlabel('\omega');
ylabel('Magn. F(k\Omega_s)');title('N=16, a)');
subplot(2,3,2);plot(w,abs(ftf2),'k');xlabel('\omega');
ylabel('Magn. F(k\Omega_s)');title('N=32, b)');
subplot(2,3,3);plot(w,abs(ftf3),'k');xlabel('\omega');
ylabel('Magn. F(k\Omega_s)');title('N=128, a)');


1.7 Continuous Linear Systems

Properties of Linear Time-Invariant Systems

Every physical system is broadly characterized by its ability to accept an input (voltage, current, pressure, magnetic fields, electric fields, etc) and to produce an output response to this input. To study the behavior of a system, the procedure is to model mathematically each element that the system comprises and then consider the interconnected array of elements. The analysis of most systems can be reduced to the study of the relationship among certain inputs and resulting outputs. The interconnected system is described mathematically, the form of the description being dictated by the domain of description, time or frequency domain. 
	In our studies we shall deal with linear time invariant systems (LTI) whose input may be deterministic or random. We will be interested to investigate systems whose initial conditions are, in general, zero. For electrical systems we will assume that they are not currents through the inductors or charges across the capacitors. 
A simple RL circuit with its block representation is shown in Fig 1.7.1. Applying the Kirchhoff’s voltage law we obtain

[bookmark: ZEqnNum278263]		


To proceed, we multiply both sides of this equation by , the form is suggested from the homogeneous solution of the above equation . We recognize that we can write the result as follows:

		
Integrate both sides of the above equation from 0 to t to obtain

	
This result is written in the form

[bookmark: ZEqnNum909853]		


Since we shall be dealing with situations where the zero initial conditions are zero, implies that the zero state solution will be zero. The desired solution will be the zero state one. From  we observe that the zero state solution is of the general form

		
known as the convolution between the functions x(t) and h(t). To obtain the convolution of two functions we go to a new domain x. To one of the functions we substitute t with x and we flip the other function in the new domain and shift it by t (we just substitute t with t-x). Next, we multiply the two functions and find (integral) the area. This result is the output y(t) at the time shift t. We repeat this procedure for all t’s and, hence, we find the output. 

Note: From we conclude that the output of LTI system, with zero initial conditions, is equal to the convolution of its input and its impulse response. The impulse response of a system is its output if its input is the delta function. Hence, we write

		


Example 1.7.1 The impulse response of an RL circuit in series is found by introducing as its input a delta function. Hence,  takes the form

		
where h(t) is the impulse response of the system and has the units of current (Amperes). Next, if we take the FT of both sides of the above equation we find the following result

		
From the FT tables we find the inverse transform to be 

		
											        ▄



Example 1.7.2 The convolution of the functions  is found by considering the different ranges of t. Let shift and flip the  function. The convolution integral takes the form

		

For the range of t<0, the two functions do not overlap and, hence, the integrand is zero and, therefore, the output is zero for this range. For the range of , the two functions in the x domain are those shown in Fig 1.7.2, and the integral becomes

		
											        ▄
	Based on the convolution property of the LTI functions and the FT property of the convolution of two functions, we obtain the frequency spectrum of the output to be equal to the multiplication of the input spectrum and the impulse response spectrum. Hence,  becomes

		

1.8 Discrete Systems-Linear Difference Equations

Discrete systems can be given in two ways: in one way, the system is represented directly by a difference equation (discrete form) and, the other way, the system is given in analog form and it is asked to be transformed in its equivalent discrete form.
	To be able to transform an analog, first and second order systems, we need the following approximations

		
If we are dealing with an integrodifferential equation, we approximate the integral as follows

		
assuming that the end of integration is an exact multiple of T. Therefore, the RL analog system, described by , is transformed to an equivalent discrete system as follows

		
The above equation is of the general form

		
This difference equation describes an IIR (Infinite Impulse Response) discrete system. Any system described by the difference equation 

		
is known as a FIR (Finite Impulse Response) discrete system. A combined system is described as follows
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We introduced the minus sign above so that we follow the general engineering practice. 
	Taking the DTFT of , setting T=1 and rearranging, we obtain the transfer function of the discrete system to be equal to

		

If we substitute  in the above equation, we obtain the z-transform representation of the transfer function
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The sequence {h(n)} is the impulse response of the discrete system and is given by

		
	From an operational point of view, z in  may be regarded as a shift operator with the property

		
Hence the difference equation  may be written in the form

		
that is

		
where H(z) is the transfer function of the discrete system. Expanding H(z) in powers of z-1 gives

[bookmark: ZEqnNum954073]		
which is the zero state solution (no initial conditions present) of the difference equation.

Stability
	Taking the absolute value of both sides of , we obtain the relation

		
The above relation indicates that for a bounded input (M=maximum value of the input) we will have a bounded output if the sum of the absolute value of the impulse response is finite.







1.9 De-Trending

Some times the data may have a trend component m(n), a seasonal component s(n), and a random component v(n). Such a signal is shown in Fig 1.5.5. Guessing that the trend is a fourth order polynomial type we set

		
Our task is to specify the unknowns a1,a2,a3,a4 and a5 and, then, subtract x(n) from the data so that only the random part of the data remains. To obtain the unknowns ai’s we proceed as follows

		
The above equations can be written in the following matrix form

		


where means the transpose of .

	    Using next the vector a in the relation Ha, we obtain a closed approximation to the shift and seasonal variation of the signal. When we subtract this signal from the original one, we obtain only the random variations of the signal. The solution  for the vector a, is known as the least square (LS) solution.
To obtain Fig 1.5.5 we used the following Book MATLAB m-file.

Book MATLAB m-File: det_and_ls

%Book m-file:det_and_ls
n=0:30;
s=1+sin(0.1*pi*n)+1.5*(rand(1,31)-0.5);%1x31 vector;
for m=0:30
    H(m+1,:)=[1 m m^2 m^3 m^4];%H=31x5 matrix;
end;
a=(inv(H'*H))*H'*s';
sv=a(1)+a(2)*n+a(3)*n.^2+a(4)*n.^3+a(5)*n.^4;%sv=seasonal variation;
v=s-sv;%v=random variation of the original signal;
subplot(2,1,1);plot(s,'kx-');hold on;plot(v,'ko-');
xlabel('n');legend('Original signal','De-trended signal');








PROBLEMS


1.3.1 Find the Fourier transform of the comb function, .
1.4.1 Verify .

1.5.1 Verify (1.17).

1.5.2 Verify .

1.5.3 Verify .

1.5.4 Verify (1.22).


1.5.5 Find the DFT of f(t)=exp(-t)u(t) using sampling time T=0.3 and the following three different lengths of the function: . Observe the magnitude of the function at zero frequency. Repeat the above with T=0.05 and observe the difference.

1.5.6 Sample and truncate the signal f(t)=sin2πt, and find its spectrum for several lengths of the signal less than 1/2 of its period. Next, sample the signal for a length equal to 1/2 of its period and then, using the same sampling time, sample the signal up to 0.8 of 1/2 of its period and observe any differences.

1.5.7 Find the FFT of the signals given below and state why there is a difference in their magnitude spectra. The functions are: x1=[1 1 1 1 1 1 1 1 0 0 0]; x2=[1 1 1 1 1 1 1 1 1 1 1]. Do not pad them with zeros.


1.7.1 Find the convolution of the functions:.




HINTS AND SOLUTIONS
1.3.1

The comb function is periodic and can be expanded in the complex Fourier series form:  


1.4.1

	

1.5.1


Rewrite  in the form: . Now, interchange the parameters n and k, which yields: . This operation is the DFT of F(.) described in the time domain.

1.5.2

We write the IDFT in the form:  

1.5.3



1.5.4



The expression in the bracket is equal to 1 if k=r and 0 for . To show this, use the finite geometric series formula. Hence, for r=k in the second sum, we find the desired result


1.5.7
Hint: In the continuous case the Fourier transform of 1 is 2πδ(ω).
1.7.1 

Ans: 


APPENDIX 1.1

TABLE OF FOURIER TRANSFORM PAIRS




                  
------------------------------------------------------------------------------------------------------------

1) 

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)


APPENDIX 1.2

SUMMARY OF CONTINUOUS TIME FOURIER PROPERTIES

Linearity                                  

Time Shifting                           

Symmetry                                

Time scaling                            

Time reversal                           

Frequency shifting                    

Modulation                                

Time differentiation                    

Frequency differentiation           

Time convolution                         

Frequency convolution                

Autocorrelation                            

Central ordinate                           

Parseval’s theorem                        
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