CHAPTER 4

PARAMETRIC AND OTHER METHODS FOR

SPECTRA ESTIMATION

In the previous chapter we presented the classical (non-parametric) spectra estimation. The procedure was to find the ACF of the data and then take the DTFT of the ACF. In this chapter we will consider the parametric approach that is based on model parameters rather than on ACF. These models include the autoregressive (AR) model, the moving average (MA) model and the autoregressive-moving average (ARMA) model. It is assumed that the data are the result of the output of one of these systems with input white noise having finite variance. The parameters and the noise variance will be determined as described in this chapter.


The parametric approach has been devised to produce better spectral resolution and better spectra estimation. However, we must be careful in using this method since the degree of improvement in resolution and spectral fidelity is solely determined by the appropriateness of the selected model.


Primarily, we will consider discrete spectra (sinusoidal signals) embedded in white noise. The motivation for studying parametric models for spectrums estimation is based on the ability to achieve better PSD estimation, assuming that we incorporate the appropriate model. Furthermore, in the non-parametric case the PSD was obtained from windowed set of data or autocorrelation sequence (ACS) estimates. The unavailable data, in both the sequences and ACS, imposed the unrealistic assumption that the data outside the windows have zero values. If some knowledge about the underlined process, which produces the sequence, is present then the extrapolation to unavailable data outside the window is more realistic process than in the nonparametric case. This brings up the idea that the window is not more needed and, as a consequence, less distortion may occur to the spectrum.

4.1 The AR, MA, and ARMA Models

The difference equation that describes the general model is (see also Ch 2):
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For simplicity and without loss of generality, we will assume that b(0) is equal to 1. In the above equation y(n) represents the output of the system and v(n) is the input white noise to the system. This is an innate-type of input to the system. Any external noise that is present must be separately added to the system. If we consider the impulse response of the system, the above equation takes the form
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For causal systems we have the relation h(m)=0 for m<0. If we take the z-transform of both sides of the above equations we obtain (remember that the z-transform of the convolution of two sequences is equal to the multiplication of their z-transforms);
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We will assume that all the roots and zeros of the transfer function H(z) are within the unit circle so that the systems are stable, causal and minimum phase. The expanded forms of the above polynomials are:
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The power spectrum of the output is given by (see (2.44))
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This equation represents the autoregressive-moving average (ARMA) model for the time series y(n) when the input is a zero-mean white noise. The ARMA PSD is obtained by setting 
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where 
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 is the variance of the white noise that entirely characterizes the PSD of the process y(n). The polynomials in the above equation are
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When the a(m)’s are zero, the system is the moving average (MA) one, and when the b(m)’s are zero, the system is an autoregressive (AR). In this text we shall concentrate on the AR-type systems since these systems provide the sharpest peaks in the spectrum at the corresponding sinusoidal frequencies and will provide us with the fundamentals of dealing with the processing of random discrete signals. The AR system is characterized in the time and frequency domain by the following two equations respectively:
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For a causal system, the ARMA and AR correlation equations are (see Prob 4.1.1):
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Since, in general, h(k) is a non-linear functions of the a(m)’s and b(m)’s coefficients and since we impose the causality condition, h(s)=0 for s<0, 
(4.10)

 for  GOTOBUTTON ZEqnNum307565  \* MERGEFORMAT  becomes
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which is the basis for many estimators of the AR coefficients of the AR process. For the values 
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, the impulse response of a causal system is zero. 
4.2 The Yule-Walker Equations

Equations (4.10)

 and for k=0 we obtain the relation
(4.11)

 indicate a linear relationship between the correlation coefficients and the AR parameters. From (4.10)

 and 
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The last equality of the above equation is true since b(0)=h(0)=1 (see (4.12)

 we obtain the following set of equations
(4.11)

 (for an AR model q=0) in connection with (4.4)

) and any other b(m) is zero for an AR model to be true. The expansion of 
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The above equations are known as the Yule-Walker (YW) or the normal ones. For additional information about vectors and matrices operations are given in Appendix 2 at the end of the book. These equations form the basis of many AR estimate methods. The above matrix is Toeplitz because 
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. If the correlation coefficients are known, the lower part of the above equation can be written as follows
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In matrix form, the above equation is
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To find 
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, we introduce the a(n)’s ,just found, in the first row of (4.13)

 is positive definite and, hence, it has a unique solution.
(4.13)

. It can be shown that the correlation matrix in 

Equation (4.13)

 can also be written in the compact matrix form as follows:
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Note: We must have in mind that the true correlation elements 
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 are replaced with the sample correlation elements 
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Example 4.2.1 Find the spectrum using the YW equations for the sequence produced by the IIR filter: 
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, where v(n) is white Gaussian noise with zero mean and unit variance values. Use 30th and 60th AR estimating models. Produce a sequence with 256 elements and add the following two different sinusoids:
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.
Solution: To produce Fig 4.2.1, we used the AR model given above where v(n) is a white Gaussian noise with variance one and mean value zero. To the above data and for the Fig 4.2.1a and b, the following signal was added: 
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. From the top two figures we observe that as the order of the AR estimating model increases, 30 and 60 respectively, the resolution increases. We can definitely identify the two frequencies, although some additional splitting (possible additional line spectra) takes place. Fig 4.2.1c and d were produced with the same data and the same orders respectively, but with the following signal: 
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. For this case, the separation of the two frequencies is clearly defined. Comparing the upper two with the lower two figures, we observe that as the signal to noise ratio increases, identification of the line spectrum improves considerably. The total number of data in the sequence was 256 and the correlation lag was 128 units.











▄


The following function will produce the estimated AR spectrum.

Book MATLAB Function sspARpsd1(x,lg,ord,L)

function[arft,w,r]=sspARpsd1(x,lg,ord,L)

%x=output of an IIR with input white Gaussian

%noise of variance 1 and mean zero;a(ord)=coefficients

%with order equal to ord;lg=number of lags for the autocorralation

%function and MUST be at least one larger than the ord;

%ord=order of the AR model; L=desired bins in the spectrum;

%on the command window the plot(w,arft) will plot the PSD;

r=sasamplebiasedautoc(x,lg);

m=1:ord;

R=toeplitz(r(1,1:ord));

a=-inv(R)*r(1,2:ord+1)';

w=0:2*pi/L:2*pi-(2*pi/L);

arft=(1./abs((1+(exp(-j*w'*m)*a)).^2))/lg;


Fig 4.2.2 was produced using the Book MATLAB function given below. Fig 4.2.2a gives three realizations of the spectrum, and Fig 4.2.2b is the result of averaging 20 realizations. The order of the AR model estimator was 60, the number of data was 256, and the lag number for the autocorrelation function was 128.

Book MATLAB Function sspARpsd_realiz1

function[w,r,arft]=sspARpsd_realiz1(lg,ord,K,L,N)

%x=output of an IIR with input white Gaussian

%noise of variance 1 and mean zero;a(ord)=coefficients

%with order equal to ord;lg=number of lags for the autocorralation

%function and MUST be at least one larger than the ord;

%ord=order of the AR model; L=desired bins in the spectrum power of 2^n;

%on the command window the plot(w,arft) will plot the PSD;

%K=number of realizations; N=length of IIR output sequence (vector x);

%arft=a LxK matrix with each column representing of the PSD for each

%realization, to plot the average you write: plot(w,sum(arft,2)), the

%number 2 indicates the summation of columns; the reader can easily change 

%the signal and the IIR filter to fit the desired outputs;

for k=0:K-1

    for n=0:N-1

    x(4)=0;x(3)=0;x(2)=0;x(1)=0;

    x(n+5)=1.3847*x(n+4)-1.5602*x(n+3)+0.8883*x(n+2)-...

    0.4266*x(n+1)+randn;

end;

q=0:N-1;

s=4*sin(0.3*pi*q)+4*sin(0.32*pi*q);

x1=x(1,5:N+4)+s;

r=sasamplebiasedautoc(x1,lg);

m=1:ord;

R=toeplitz(r(1,1:ord));

a=-inv(R)*r(1,2:ord+1)';

w=0:2*pi/L:2*pi-(2*pi/L);

arft(:,k+1)=(1./abs((1+(exp(-j*w'*m)*a)).^2))/lg;

end;

4.3 The Least Squares Method and Linear Prediction

An alternative approach would be to perform a least squares minimization with respect to the linear prediction coefficients. There exist two types of least squares estimates, the forward and backward linear prediction estimates, and the combination of forward and backward linear prediction. 


Assume the N-data sequence 
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Therefore, the prediction error is
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The vector a, that minimizes the prediction error variance 
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, is the desired AR coefficients. From (4.18)

 we obtain (see Prob 4.3.1)
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where 
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. The vector  GOTOBUTTON ZEqnNum263528  \* MERGEFORMAT  that minimizes (4.19)

 (see Prob. 4.3.2) is given by
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which is identical to (4.15)

 and was derived from the YW equations. The minimum prediction error is found to be (see Prob. 4.3.3)
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The LS AR estimation method approximates the AR coefficients found by (4.20)

, using a finite sample instead of an ensemble, by minimizing the finite-sample cost function
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From the complex number properties, we know that the absolute value square of a set of complex number is equal to the square values of the real and imaginary parts of each number (in our case here is only the real factors that are present) and, therefore, the summing of these factors from N1 to 
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 is equivalent to the Frobenius norm of the following matrix (see Appendix 2 Matrices)
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where we assumed that y(n)=0 for n<N1 and n>N2.

The vector 
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 that minimizes the cost function J(
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If we set N1=p+1 and N2=N, the above vectors take the form
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Example 4.3.1 Use the following AR model to find 64 terms of its output:
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. The noise v is a zero mean and unit variance Gaussian process. In addition, it was added the following signal: 
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Solution: Fig 4.3.1 shows two columns. In the first column the PSD for order 3, order 4 (equal to the AR model) and order 8 was produced with noise variance of one. The second column was produced with variance of the noise about one hundred. It is apparent from the figure that the order, as well as the signal to noise power, plays a predominant role in identifying line spectra.












▄

The following Book MATLAB function was used to create Fig 4.3.1. The reader can easily change the IIR filter producing the output and/or the signal.
Book MATLAB Function ssp_covariance_methodpsd(p,N)

function[y,a]=ssp_covariance_methodpsd(p,N)

%p=order of the AR filter for the PSD estimate;

%N=the number of IIIR output and signal length;

%y=signal and IIR output combined;a is a vector

%of the AR coefficients;

for m=0:N-1

y1(1)=0;y1(2)=0;y1(3)=0;y1(4)=0;

y1(m+5)=1.3847*y1(m+4)-1.5602*y1(m+3)+0.8883*y1(m+2)...

    -0.4266*y1(m+1)+randn;

s(m+1)=3*sin(0.3*pi*m)+3*sin(0.32*pi*m)+2*sin(0.6*pi*m);

end;

y=y1(1,5:length(y1))+s;

for t=0:-p+N-1

    yv(t+1)=y(t+p+1);

end;

for r=0:N-p-1

    for q=0:p-1

    Y(r+1,q+1)=y(1,p+r-q);

end;

end;

a=-(inv(Y'*Y))*(Y'*yv');

To produce the graph, at the command window you can write: 

w=0:2*pi/512:2*pi-(2*pi/512);

m=1:p;

psd=1./abs((1+exp(-j*w'*m)*a)).^2));

plot(w,psd);
Modified Covariance Method Using Linear Transformation

To produce Fig 4.3.2, we used the following Book MATLAB function.

Book MATLAB Function: [y,a,Y]=ssp_mod_cov_meth1(p,N)

function[y,a,Y]=ssp_mod_cov_meth1(p,N)

%N=length of data in 2^n;p=order of approximating AR system;

for m=0:N-1

    y1(1)=0;y1(2)=0;y1(3)=0;y1(4)=0;

    y1(m+5)=1.3847*y1(m+4)-1.5602*y1(m+3)+0.8883*y1(m+2)...

        -.4266*y1(m+1)+randn;

    s(m+1)=3*sin(0.3*pi*m)+3*sin(0.33*pi*m)+2*sin(0.6*pi*m);

end;

y=y1(1,5:length(y1))+s;

ylt=[y*0.2  0.2*y+.05*randn(1,length(y))];

for t=0:-p+length(ylt)-1

    yv(t+1)=ylt(t+p+1);

end;

for r=0:length(ylt)-p-1

    for q=0:p-1

        Y(r+1,q+1)=ylt(1,p+r-q);

    end;

end;

a=-(inv(Y'*Y))*(Y'*yv');
On the left side of Fig 4.3.2, we plotted the PSD produced by the covariance method versus the order of the AR estimating system. On the right side we plotted the PSD produced by the proposed modified method of linear transformation of rv’s. It is apparent that the proposed method successfully differentiates the two frequencies at 
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4.4 Minimum Variance (MV) Method


The MV method produces a spectrum estimate by filtering the signal through a bank of narrowband band pass filters. Let’s have a band pass filter that has unit gain at 
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Therefore, (4.26)

 becomes
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conjugate each vector element and then transpose the vector. For real data the superscript H becomes the transpose operator T. The spectrum of the output of the above band pass filter (system) is given by (2.45) to be equal to
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It can be shown that the filter design problem becomes one of minimizing (4.27)

. Hence we write
(4.28)

 subject to the linear constraint given by 
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for one of the filters in the bank and for the frequency 
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. Because this is any frequency, the above equation is true for all frequencies. Hence, we write
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and the power estimate is 
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where 
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. The reader should remember that R is symmetric and, therefore, 
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Fig 4.4.1 shows the PSD using the MV method and averaging 20 spectrums with increasing the correlation matrix from 
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in increments of 5. Fig 4.4.1a shows the signal 
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 and Fig 4.4.1b shows the PSD. The following Book MATLAB function produces the power estimate using the MV method.

Book MATLAB Function: [psd]=ssp_mv_psd1(x,P,L)

function[psd]=ssp_mv_psd1(x,P,L)
%x=data;P=number divided exactly by 5;
%L=number of frequency bins;
%psd=averaged power spectra P/5 times; 
r=ssp_sample_biased_autoc(x,floor(length(x)*0.8));
psd1=0;
for p=5:5:P;
    R=toeplitz(r(1,1:p));
for m=0:L-1;
    n=0:p-1;
e=exp(-j*m*(2*pi/L)*(n-1));
ps(m+1)=abs(1/(e*inv(R)*(conj(e))'));
end;
psd1=psd1+abs(ps)/max(abs(ps));
end;
psd=psd1/max(psd1);
Example 4.4.1 Find the power spectrum estimate using the MV approach. Assume a white noise signal {x(n)} having zero mean value and variance 
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Solution: The autocorrelation of white noise signal is given by 
[image: image68.wmf]2

(,)()

xx

rnmnm

sd

=-

. Therefore, the autocorrelation matrix takes the form
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Since we have the following relations (see Appendix 2 for matrix inversion)
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(4.31)

 becomes
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▄
4.5 Model Order

It is important that we are able to approximately estimate the order of the system from which the data were produced. To estimate the order of the filter, Akaike has developed two criteria based on concepts in mathematical statistical. These are, the final prediction error (FPE) and the Akaike information criterion (AIC). Their corresponding equations are:
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Studies of the FPE criterion show that it tends to have a minimum at values of the order p are less than the model order. The shortcomings of the AIC criterion, is that it tends to over estimate model order. Besides these shortcomings both of these criteria are often used in practical applications. Fig 4.5.1 shows both of these criteria using the sspAR_FPE_AIC_criterion1 m-file to produce the needed a(i)’s coefficients and the autocorrelation function r(k). It is obvious to conclude, from both criteria, that the order is about four, which is the correct value. For the present case we used 128 data points and 30 lag times for the autocorrelation function.

4.6 Levinson-Durbin Algorithm

The Levinson-Durbin algorithm is a recursive algorithm for solving the Yule-Walker equations to estimate the model coefficients. This scheme is based upon the concept of estimating the parameters of the model of order p from the parameters of a model of order p-1. This is possible because the Toeplitz form of the matrix (See Appendix 2). From (4.10)

, with m=0 and k=1, and taking into consideration that the impulse response is zero for negative times, we obtain (the a’s are estimates)
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From (4.12)

, and for first order system, we find the relation
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After finding the above two initial relations, the recursive scheme starts from the second-order model and is found from (4.14)

 to be equal to
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Observe that we used the equality of the correlation coefficients ry(k)=ry(-k) and we specifically identified the order of approximation of the a’s coefficients with a subscript. Using the first equation of (4.35)

 and solving for a2(1) we obtain
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To obtain a2(2) we must use the augmented YW equation (4.13)

 of order 2



[image: image77.wmf](

)

2

,2

2

2

(0)(1)(2)

1

(1)(0)(1)(1)0

0

2

()(1)(0)

yyy

v

yyy

yyy

rrr

rrra

a

rprr

s

éù

éù

éù

êú

êú

êú

êú

=

êú

êú

êú

êú

êú

êú

ëû

êú

ëû

ëû


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (4.37)

The crucial point is to express the left-hand side of (4.36)

, the column vector of a’s becomes
(4.37)

 in terms of a2(2). Using 
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Introducing the results of the above equation in (4.37)

 and applying the matrix properties (see Appendix 2) we obtain
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The above equation can be written in the form
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From the third equation of the above system we obtain the unknown a2(2) as follows
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Using (4.40)

 we obtain the variance for step two or first order
(4.41)

 and the first equation of the system 
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Example 4.6.1 The autocorrelation matrix of a second order IIR system output, with an input of zero mean Gaussian noise, is given by
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Proceed to find the variances and filter coefficients.

Solution: From 
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 and from 
(4.34)

 we obtain  GOTOBUTTON ZEqnNum217880  \* MERGEFORMAT . From (4.41)

 we obtain 
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 and from 
(4.36)

 we obtain  GOTOBUTTON ZEqnNum791607  \* MERGEFORMAT -0.1929. The noise variance is 
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▄
LEVINSON-DURBIN ALGORITHM (real-valued case)
1 Initialize the recursion with the zero order model
a) 
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Book MATLAB Function: [a,var]=ssp_levinson(r,p)

function[a,var]=ssp_levinson(r,p)
r=r(:);%p=number of a's+1;to find r we can use
       %the Book MATLAB function
       %r=sasamplebiasedautoc(x,lg), p<lg,
       %lg=the lag number of the autocorelation 
       %function r;
a=1;
var=r(1);
for j=2:p
    g=r(2:j)'*flipud(a);
    gamma=-g/var;
    a=[a;0]+gamma*[0;(flipud(a))];
    var=var*(1-abs(gamma)^2);
end;
Based on the above results we can proceed to plot the spectrum using the following expression in the command window:

ps=abs(sqrt(var)./(exp(-j*[0:0.01:6.2]’*[1:p])*[a]).^2);

plot([0:0.01:6.2],ps/max(ps));

Fig 4.6.1 shows the original signal and the spectrum for three different number (10, 20 and 40) of  p’s which correspond to a’s=p-1 coefficients of the AR model. The signal was: 
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        ▄

Similarly, we can also use the Yule-Walker function below to obtain the desired coefficients.

Book MATLAB Yule-Walker Function: [a,var]=ssp_yule_walker_alg(x,lg,p)
function[a,var]=ssp_yule_walker_alg(x,lg,p)
%x=signal;lg=lag number;
%p=order of AR model=number of a's<lg;
r=sasamplebiasedautoc(x,lg);
R=toeplitz(r(1,1:p));
a=inv(R)*r(1,2:p+1)';
var=r(1)+sum(r(1,p+1).*a');

To plot the spectrum we must write in the command window:

>>ps=abs(sqrt(var)./(exp(-j*[0:0.01:6.2]’*[1:length(a)+1])*[1;-a]).^2);

>>plot([0:0.01:6.2],ps/max(ps));
The reader can also use the following simple Book MATLAB program in the command window:
4.7 Maximum Entropy Method
Because we are limited to small number of lags when finding the autocorrelation function, it is natural to ask the question: how can we expand the autocorrelation function such that the extension be as accurate as possible. One such method that was suggested is the maximum entropy method (MEM). It can be shown that the estimate of the PSD using the MEM approach is given by
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where 
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The vector a is the solution of (4.44)

 are solved for the a’s and b(0)2. The following Book MATLAB function produces the PSD using the MEM method.(4.44)

 and rx(k) is the correlation of the data. First, the autocorrelation normal equations 
Book MATLAB Function: function[s]=sspmax_entropy_meth(x,p)
function[s]=ssp_max_entropy_meth(x,lg,p)
%x=data;p=order of AR system;p<lg=lag number of the
%autocorrelation function;
[a,var]=ssp_yule_walker_alg(x,lg,p);
s=var./abs(fft([1;-a],512));%s=PSD;
w=0:2*pi/512:2*pi-(2*pi/512);
To plot the spectrum, we write in the command window:

>>plot(w,s/max(s));

Fig 4.7.1 shows the PSD using the maximum entropy method with the following inputs: 
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,lg=60, and p=10,p= 20 and p= 40.
4.8 Spectrums of Segmented Signals
Many times we are faced with the situation where some data are missing e.g breaking down of a detector or receiving data from space and interrupted by the rotation of the earth. 

Let the sequence to be used is
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Let the sequence {x(n)} has 64 elements of which 
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(are missing). The noise v(n) is WG of zero mean and variance 
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. Fig 4.8.1 shows the sequence, its segmented form, and their corresponding spectra.
Method 1: The Average Method 

In this method we obtain the spectrum, S1, of the first segment, next we obtain the spectrum, S2, of the second segment and then average them: 
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. Fig 4.8.2 shows a) the spectrum of the first segment, b) the spectrum of the second non-zero segment, and c) the average spectrum of the first two spectra. The signal is the same given in the previous paragraph.
Method 2: Extrapolation Method


One of the basic ideas is to assume that a signal is the result of an AR process and find extra values of the signal using the extrapolation method. Let the estimate x(n) be given by the linear combination of the previous values of the system. Hence,
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then the error in the estimate is given by the difference
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or
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The normal equations, whose solution provides the optimal coefficients, can be derived directly in matrix form by first defining the vectors
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The vector a of the coefficients and the prediction error variance 
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, we write (see 
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To find the optimal filter coefficients we apply the orthogonality principle, which states that 
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. These assertions can be stated in compact matrix form
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Drop the argument n for simplicity and substitute (4.53)

 to obtain(4.52)

 in 
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Equation (4.54)

 is the well known normal equations.
Example 4.8.1 The following Book MATLAB function finds the spectrum of a segmented sequence with 64 elements of which the 32 central ones are missing. The results are shown in Fig 4.8.3-1 and Fig 4.8.3-2. The signal 
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 with 64 values is segmented as follows: 
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. Fig 4.8.3-1 part a) presents the noisy signal, part b) shows the segmented signal and part c) shows the PSD of the noisy signal. Fig 4.8.3-2 part d) shows the PSD of the segmented signal, part e) shows the PSD of the forward extension using the first segment, and part f) shows the PSD of the backward extension of the second segment. It is apparent that the extrapolation gives good results. 
Book MATLAB Function:

[x1,a1,xe1,x2,a2,xe2,xe1f,xe2f]=ssp_psd_meth_1(x,seg1,seg2,p]
function[x1,a1,xe1,x2,a2,xe2,xe1f,xe2f]=ssp_extrap_psd_meth_1(x,seg1,seg2,p)
%r=autocorrelation of x;seg1=length of first segment;seg2=length
%of the second segment (se fig 2);length(x)=2^n;p=filter order;
subplot(3,1,1);plot(x,'k');xlabel('n');ylabel('x(n)');
xx12=[x(1,1:seg1) zeros(1,(length(x)-seg1-seg2)) x(1,(length(x)-seg2+1):length(x))];
subplot(3,1,2);plot(xx12,'k');xlabel('n');ylabel('Segm. x(n)');
%-------------------------
%Spectrum of the complete sample and segment samples;
w=0:2*pi/256:2*pi-(2*pi/256);
fx=fft(x,256);
subplot(3,1,3);plot(w,abs(fx)/max(abs(fx)),'k');
xlabel('\omega rad/unit');ylabel('PSD of x(n)');
fxs=fft(xx12,256);
figure(2);
subplot(3,1,1);plot(w,abs(fxs)/max(abs(fxs)),'k');
xlabel('\omega rad/unit');ylabel('PSD of segm. x(n)');
%--------------------------
%Extrapolation
r1=xcorr(x(1,1:seg1),'biased');
rs1=r1(1,seg1:2*seg1-1);%p<length(rs1);
[a1,var1]=ssp_yule_walker_alg_rp(rs1,p);
Ext1=length(x)-seg1-seg2;
for m=1:Ext1
    x1(seg1+m)=sum(a1'.*fliplr(x(1,seg1-p+m:seg1-1+m)));
end;
xe1=[x(1,1:length(x)-seg1-seg2) x1(length(x)-seg1-seg2+1:length(x)...
    -seg2)  x(1,length(x)-seg2+1:length(x))];
r2=xcorr(x(1,length(x)-seg2:length(x)));
rs2=r2(1,seg2:2*seg2-1);
[a2,var2]=ssp_yule_walker_alg_rp(rs2,p);
%the above p can change to p1 if different number of a's
%is desired; p<min{rs1,rs2};
Ext2=length(x)-seg1-seg2;
for k=1:Ext2
    x2(length(x)-seg2+1-k)=-sum((a2/max(a2))'.*x(1,length(x)-seg2...
        +2-k:length(x)-seg2+1+p-k));
end;
xe2=[x(1,1:length(x)-seg1-seg2) x2(length(x)-seg1-seg2+1:length(x)...
    -seg2) x(1,length(x)-seg2+1:length(x))];
xe1f=(abs(fft(xe1,256))/max(abs(fft(xe1,256))));
subplot(3,1,2)
plot(w,xe1f,'k');xlabel('\omega rad/unit');ylabel('PSD of ext1');
subplot(3,1,3);
xe2f=(abs(fft(xe2,256))/max(abs(fft(xe2,256))));
plot(w,xe2f,'k');xlabel('\omega rad/unit');ylabel('PSD ext2');











    ▄ 

We can further introduce the following approaches for the extrapolation method: a) from the forward extrapolated signal, find the autocorrelation function and then the PSD; b) from the backward extrapolated signal, find the autocorrelation signal and the its PSD; c) Find the average of the previous two spectrums; d) using Monte Carlo method by repeating the process and then averaging.

4.9 Eigenvalues and Eigenvectors of Matrices (see also Appendix 2)

 Let’s create the relationship between a vector v and a 
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 matrix A and a constant  
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 as follows:
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where I is the identity matrix having ones along the diagonal and zeros for the rest of the elements. Since q=0 is always a solution, we must find the non-zero solution if it exists. The number 
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 is called the eigenvalue and the vector q belonging to that particular eigenvalue is called eigenvector. To find the eigenvalues, the determinant 
[image: image126.wmf]l

A-I

 must be equal to zero. If, for example,
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MATLAB has the following function to find the eigenvalues and the corresponding eigenvectors: [Q,D]=eig(A), where Q is a matrix containing the eigenvectors (columns) and D is a diagonal matrix containing the eigenvalues.

For this case, and referring to (4.55)

, we have the relations
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It is apparent that the solution to the system is any eigenvector which is the multiple of the vector q1=[1    1]T. Similarly, the second eigenvalue corresponds to any multiple of the vector q2=[5    2]T. If we use the MATLAB function, we obtain
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In the above equation, the columns of Q are the eigenvectors and the diagonal values are the corresponding eigenvalues. Although the eigenvector matrix, given by MATLAB, seems that gives different results, the values are proportional. If we divide the first column by 0.3714 and multiply by 2, we obtain the vector [5   2]T. Similarly, if we divide the second by 0.7071, we obtain the vector [1   1]T . 

After finding the eigenvectors and eigenvalues, the following matrix operations are true
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 It is known (see Prob. 4.9.1) in matrix theory that:


If the eigenvectors of a matrix correspond to different eigenvalues, then those 
eigenvectors are linear independent. Therefore, if the eigenvectors of a matrix are 
linearly independent then the eigenvalues are distinct. If, in addition, the matrix is 
symmetric, the eigenvectors corresponding to distinct eigenvalues are orthogonal.   
Eigendecomposition of the Autocorrelation Matrix
Let’s consider a sinusoid having random phase
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where A and 
[image: image133.wmf]0

w

 are fixed constants and the phase is a rv that is uniformly distributed over the interval 
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. The mean value and the autocorrelation of x(n) is given by ( see Prob. 4.9.2)
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Since the mean is a constant and the autocorrelation depends only on the difference (lag time) the process is WSS.

If a signal is made up of sinusoids with additive white noise
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its autocorrelation function is
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where the amplitudes and frequencies are fixed constants and the phases are random variable that are uniformly distributed. 

We can consider the complex form of the sinusoids as follows
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where the phase is a rv uniformly distributed in the interval 
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. Therefore, the mean is (expand the exponent in Euler’s format)
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and the autocorrelation function is
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where k-l is the lag of the autocorrelation function and can be substituted simply by k (setting l=0).   P is the power of the sinusoidal (complex) signal. Note that the mean is constant and the autocorrelation is independent of the time origin. Therefore, the process is a WSS.

If the noise is white with mean value zero, then the autocorrelation (see Sec 2.2) function is 
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 and, therefore, the autocorrelation of p sinusoids embedded in noise is 
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For p=2, we obtain
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Therefore, the correlation matrix is

If we define (the exponent H stands for Hermitian or, equivalently, stands for transposed conjugate of a vector or matrix and just conjugation for a complex quantity)
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then (see Appendix 2)
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The above equation can be put in the compact form 
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Therefore for p sinusoids, the general autocorrelation matrix is
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Example 4.9.1 Find the eigenvalues and eigenvectors of a signal having the following correlation matrices:
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Solution: Using MATLAB, we obtain:
1) Signal eigenvectors and eigenvalues
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 2) Noise eigenvectors and eigenvalues
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3) Data eigenvectors and eigenvalues


[image: image152.wmf]2

()()

sisi

xisviiiviivi

slsls

+

Rv=R+Iv=v+v=v


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (4.66)

Therefore, the eigenvectors of Rx are the same as those of Rs, and the eigenvalues of Rx are
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Therefore, the largest eigenvalue of Rx is 
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and the remaining M-1 eigenvalues are equal to 
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Note: Parameter extraction for one frequency in the data

a) Perform an eigendecomposition of the autocorrelation matrix Rx. The largest eigenvalue is equal to 
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 and the remaining eigenvalues are equal to 
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b)  Use the eigenvalues of Rx to solve for the powe P1 and the noise variance
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c) Since Rx is the result of noisy data {x(n)}, we consider weighted averages as follows. Let vi be a noise eigenvector of Rx, e.g. one that has an eigenvalue 
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, and let vi(k) be the kth component of vi. If we compute the DTFT, of the coefficients in vi
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then the orthogonality condition (see 
(4.64)

) implies that at  GOTOBUTTON ZEqnNum423859  \* MERGEFORMAT  the value of 
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 will be equal to zero and, hence, the PSD estimation function
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will be extremely large at 
[image: image164.wmf]i
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. This is an effective way to estimate the 
frequency. To avoid errors in estimating the frequency, using only one 
eigenvector, it is recommended that a weighted average of all the noise 
eigenvectors are used. Hence, we write
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where ai’s are some appropriate chosen constants.
Harmonic Model

Consider the signal model that consists of p complex exponentials in white noise
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Where 
[image: image167.wmf]i

w

 is the discrete-time frequency (rad/unit), and Ai is a complex number of the form
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It is known (see Ch 1 and Ch 2) that the spectrum  of sinusoidal functions are impulses in the frequency domain. The additive noise produces a constant background level at the power level of the white noise 
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Since we will be dealing with discrete signals, it is advantageous to form a vector of the signal over a time window of length M. Therefore, the data take the form
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 The signal in (4.70)

 can know be written in the form
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Note that we differentiate the signal made up of sinusoidal functions (complex) and the white noise signal. We observe that for the data x(n)=s(n)+v(n) , the autocorrelation function of x(n) is
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Therefore, the 
[image: image173.wmf]MM
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autocorrelation matrix of x(n) may be expressed as
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Where E is a 
[image: image175.wmf]Mp
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 matrix whose columns are the time-window frequency vectors of length M (see 
(4.73)

) at frequencies  GOTOBUTTON ZEqnNum699383  \* MERGEFORMAT  and A stands for the matrix
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We must always take the time window length M to be greater than the number of sinusoids p.

We can write the 
[image: image178.wmf]MM

´

 autocorrelation matrix of the data in the form (see App 2)
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Correspondingly, we can also write the above equation as follows
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Thus, the M-dimensional subspace that contains the observations of the time-window signal vector can be split into two subspaces spanned by the signal and noise eigenvectors respectively. These two subspaces are known as the signal subspace and noise subspace. These subspaces are orthogonal to each other since the correlation matrix is Hermitian symmetric (the eigenvectors of a Hermitian symmetric matrix are orthogonal 
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The eigedecomposition separates the eigenvectors into two sets. The set 
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, which are orthogonal to the principal eigenvectors belong to the noise subspace. Since the signal vectors ei are in the signal subspace, it simply follows that they are a linear combination of the principal eigenvectors and, hence, they are orthogonal to the vectors in the noise subspace (see Fig 4.9.1).

Example 4.9.1 Find the eigenvalues and eigenvectors of a signal having the following correlation matrices:
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Solution:  Using MATLAB, we obtain:

1) Signal eigenvectors and eigenvalues
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2) Noise eigenvectors and eigenvalues
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3) Data eigenvector and eigenvalues
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4) Expansion of autocorrelation matrix (the exponent H (Hermitian) becomes T (transpose) for real matrices)
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Based on the above results we conclude, as before, that the following relation holds:
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Note: a) the eigenvalues of the data (signal plus noise) is equal to sum (see Prob 4.9.3) of the eigenvalues of the signal plus the variance of the noise; b) the eigenvectors of the data are identical to the eigenvectors of the signal; c) (4.79)

 relation holds.











        ▄

If there exist p sinusoids in the data, then the first p eigenvalues in descending order correspond to the first part of (4.79)

 is the signal subspace and the second part is the noise subspace.
(4.79)

 (signal) and the remaining correspond to the second part (noise). These columns of these matrices consist of the signal and noise eigenvectors. This first part of 

The following book MATLAB function produces the autocorrelation matrix if the data vector (sequence) {x(n)} is given. The autocorrelation is given by
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Book MATLAB function: [rx]=ssp_est_autocor_matrix(x)

function[rx]=ssp_est_autocor_matrix(x,M)
%rx=NxM matrix;N/M=integer;N=length(x)=2^n;
%M=time window along the vector x;x=row data;
N=length(x);
for n=1:N
    for m=1:M
        X(n,m)=x(1,m+n-1);
    end;
end;
rx=(conj(X'))*X/length(x);
Pisarenko Harmonic Decomposition

Pisarenko observed that an ARMA (autoregressive moving average) process consisting of p sinusoids in additive white noise, the noise variance corresponds to the minimum eigenvalue of Rx and, hence, the method proceeds as follows: a) estimate Rx from the data; b) find the minimum eigenvalue (the MATLAB function [Q,D]=eig(Rx) gives the eigenvalues in the descent order and to those values correspond the eigenvectors); c) find the minimum eigenvector; d) use the equation
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Example 4.9.2 Find the spectrum (known as pseudo-spectrum) using the method of Pisarenko harmonic decomposition. The following data were used for the Fig 4.9.2:
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 with n=0, 1, 2, … , 31 and a=3 and a=1 which controls the variance of the noise. The following Book MATLAB function was used to obtain the spectrum:

Book MATLAB function for Pisarenko harmonic decomposistion:

[qmin,sigma,q,d]=ssp_pisar_harm_decomp(x,p) 

function[qmin,sigma,q,d]=ssp_pisar_harm_decomp(x,p)
%this function graphs the PSD using Pisarenko
%harmonic decomposition; qmin=minimum eigenvector;
%sigma=noise variance;q=matrix eigenvectors;
%d=diagonal matrix of the eigenvalues by descending
%order;p=number of harmonic present;
r=xcorr(x,'biased');
R=toeplitz(r(:,length(x):length(x)+2*p));
[q,d]=eig(R);
sigma=min(diag(d));
coln=find(diag(d)==sigma);
qmin=q(:,coln);
w=0:2*pi/256:2*pi-(2*pi/256);
plot(w,((abs(1./fft(qmin,256))/abs(1./fft(qmin,256)))),'k');
We observe that the strength of the noise plays a dominant effect on the location of the spectra lines. The Pisarenko method is important from the conceptual and analytical perspective. It lucks robustness to be used for most applications. Furthermore, the correlation matrix must be estimated and, therefore, the resulting noise eigenvectors are only estimated. Because the roots of the minimum estimator can be close to the unit circle, splitting of the line spectrum can also occure.

MUSIC Algorithm


The MUSIC (multiple signal classification) algorithm is based on two disciplines: a) the window M is not set equal to p+1 but larger than that; b) we average the noise spectra. Therefore, we write
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It has been suggested that we can also multiply the ith factor of the summation by 
[image: image196.wmf]1/
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. The following Book MATLAB function plots the MUSIC spectrum.

Book MATLAB function for the MUSIC spectrum: [psd,q,d,R]=ssp_music_alg(x,p,M,nfft)

function[psd,q,d,R]=ssp_music_alg(x,p,M,nfft)
%length(x)+M<2*length(x); R=correlation matrix;
%p=number of sinusoids; M=time window;nfft=the
%desired number of bins in fft e.g. 256 or 512;
%to observe the spectrum write plot(psd/max(psd));
r=xcorr(x,'biased');
R=toeplitz(r(:,length(x):length(x)+M));
[q,d]=eig(R);
qin=zeros(nfft,1);
for i=1:M-p-1
    qin=qin+abs(fft(q(:,i),nfft));
end;
psd=1./(qin/max(qin));
Fig 4.9.3 shows the MUSIC spectrum for the following function and for two time windows: a) M=5 and b) M=15, 
[image: image197.wmf]()sin(0.3**)sin(0.6**)rand(1,32)
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,  n=0, 1, 2, … ,31. 
PROBLEMS
4.1.1 Derive (4.10)

.

4.3.1 Verify (4.19)

.

4.3.2 Verify (4.20)


4.3.3 Verify (4.21)

 

HINTS, SUGGESTIONS AND SOLUTIONS
4.1.1
From 
(4.1)

 we write:  GOTOBUTTON ZEqnNum458570  \* MERGEFORMAT  (1). Multiply (1) by y(n-k) and take expectations to obtain: 
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 (3) and, hence the last expectation of (2) becomes 
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4.3.1 
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4.3.2

From 
(4.19)

 we obtain (for a 2x2 matrices, which can be extrapolated to any dimension (see also App.II Matrices))  GOTOBUTTON ZEqnNum767177  \* MERGEFORMAT 
4.3.3
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where we used the following ident
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ities (see also App. II Matrices): 

 because J() is a constant, the first fa

ctor after the last equality is constant

since matrx  is positive definite matrix

 and, hence
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, the last two terms is the minimum mean

 square

error.
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