CHAPTER 3

NON-PARAMETRIC (CLASSICAL) SPECTRUMS

ESTIMATION

Estimating the power spectrum given a long random sequence {x(n)} can be accomplished by, first, creating its autocorrelation function and then taking the FT of it. However, there are several problems that appear in establishing power spectra densities. First, the sequence may not be long enough and, some times can be very short. Second, the spectra characteristics may change with time. Third, data very often are corrupted with noise. Therefore, the spectrum estimation is a problem that involves estimating 
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 from a finite noisy measurements, x(n).

3.1 The Periodogram and the Correlogram Spectra Estimators
Deterministic Signals 
If the sequence {x(n)} is a deterministic real data sequence and has finite energy, e.g.
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then the sequence possesses a DTFT
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The inverse DTFT (IDTFT) is (see Prob 3.1.1)
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Note: The time function is discrete and the transformed one is continuous.

Note: The reader should remember that, if the sequence is the result of sampling a continuous signal, the discrete frequency can be easily converted to physical frequency rad/s by dividing it by the sampling time Ts. Hence, the frequency range becomes 
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. In addition, we make the following changes in(
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:  GOTOBUTTON ZEqnNum879723  \* MERGEFORMAT ,
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We can define the energy spectral density as follows
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The Parseval’s theorem for real sequence states the following (see Prob 3.1.2):
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Note: This formula states that the total energy in the time domain is equal to the total power in the frequency domain. It does not tell us what part of the time domain energy is distributed in a specific frequency range.

The autocorrelation of a sequence is defined as follows
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Its DTFT is equal to its power density spectrum (see Prob 3.1.3)
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3.1.1 Random Signals
The periodogram

Stationary random signals, which we will study in this text, have usually finite average power and, therefore, can be characterized by an average power spectral density. We shall call such a quantity the power spectral density (PSD). Without loss of generality, the discrete real random sequences, which we will study in this text, will assume that they have zero mean value, e.g.
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The periodogram spectral density is defined as follows
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For a finite random sequence, {x(n)}, the periodogram spectral estimator is given by
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where 
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 is positive, since it is equal to the square of the absolute value of the DTFT function of {
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 the estimate periodogram converges to the power spectrum of the process. However, the periodogram is not a consistent estimate of the power spectrum. This means that the variance of the periodogram does not decrease by increasing the number of terms.
Book MATLAB Function: [s,as,ps]=sspperiodogram(x,L)
function[s,as,ps]=sspperiodogram(x,L)
%[s,as,ps]=sspperiodogram(x,L)
%L=desired number of points (bins) of the spectrum;
%x=data in row form; s=complex form of the DFT;
%the directory sspdata.mat contains the file ch3-data1 which
%contains ten thousand elements of two sine signals, a normal

%noise sequence and the signal x of the sum of the three signals;
for m=1:L
    n=1:length(x);
    s(m)=sum(x.*exp(-j*(m-1)*(2*pi/L)*n));
end;
as=((abs(s)).^2/length(x));%as=amplitude spectral density;
ps=(atan(imag(s)./real(s))/length(x));%ps=phase spectrum;
%To plot as or ps we can use the command:
%plot(0:2*pi/L:2*pi-(2*pi/L),as);for the phase spectrum
%we change as to ps;

To plot as or ps we can use the command format: plot(0:2*pi/L:2*pi-(2*pi/L),as);


The bias and variance are two basic measures often used to characterize the performance of spectrum estimation. It turns out (see Prob 3.1.4) that the mean squared error (MSE) of the estimate is:
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By considering the bias and variance separately, we gain some insight into the source of error and its magnitude. From 
(3.11)

, the bias of any estimator  GOTOBUTTON ZEqnNum130991  \* MERGEFORMAT  is given by
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where 
[image: image26.wmf]q

 is the population value of the parameter. The bias measures the average deviation of the estimator from its true value. An estimator is said to be unbiased if 
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=0. In this case the mean square error becomes equal to variance, and the mean value of the time series is equal to the population mean. 
The Correlogram

The correlogram spectral estimator is based on the formula
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The biased autocorrelation function is given by
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The unbiased one is given by the same formula, with the difference, instead of dividing by N the expression is divided by N-k. In practice the biased autocorrelation is used since it produces positive definite matrices and, thus, can be inverted..

To produce the biased correlation function, the following Book MATLAB function may be used:

Book MATLAB Function for Finding the Biased Autocorrelation Function:

[r]=ssp_sample_biased_autoc(x,lg)

function[r]=ssp_sample_biased_autoc(x,lg)
%Book MATLAB function:[r]=ssp_sample_biased_autoc(x,lg)
%this function finds the biased autocorrelation function
%with lag from 0 to lg;it is recommended that lg is 20-30% of 
%N;
N=length(x);%x=data;lg=lag;
for m=1:lg
    for n=1:N+1-m
        xs(m,n)=x(n-1+m);
    end;
end;
r1=xs*x';
r=r1'./N;
We can also use MATLAB to obtain the sample biased and unbiased autocorrelation and cross-correlation. The functions are:

r_xy=xcorr(x,y); % x,y are N length vectors; rxy= a 2N-1 symmetric cross-correlation 

                         %vector, in case the vectors do not have the same length, the shorter

                         %one will be padded with zero; Note: The correlation sequence is not 

                         %divided by N or N-1;

r_xy=xcorr(x,y,’biased’); %will give the biased cross-correlation function and the


                                  %sequence is divided by N;

r_xy=xcorr(x,y,’unbised’);%will give the unbiased autocorrelation function;


The Book MATLAB function given below produces the PSD known as the correlogram.
Book MATLAB Function for Finding the Windowed Correlogram: [s,asc,psc]=sspcorrelogram(x,w,lg,L)

function[s,asc,psc]=sspcorrelogram(x,w,lg,L)

%[s]=sspcorrelogram(x,w,lg,L);

%x=data with mean zero;w=window(@name,length(2*lg)), see sspperiodogram

%function and below this function;L=desired number of spectral points;

%lg=lag number<<N;rc=symmetric autocorrelation function;

r=sspsamplebiasedautoc(x,lg);

rc=[fliplr(r(1,2:lg)) r 0];

rcw=rc.*w';

for m=1:L

    n=-lg+1:lg;

    s(m)=sum(rcw.*exp(-j*(m-1)*(2*pi/L)*n));

end;

asc=(abs(s).^2)/norm(w);%asc=amplitude spectrum;

psc=(atan(imag(s))/real(s))/norm(w);%psc=phase spectrum;

Note: In case the reader does not want to use window, he she must set w=window(@rectwin,length(2*lg)’) or w=rectwin(2*lg)’. The same can be done for any other window e.g. w=hamming(2*lg)’. Note the MATLAB  transpose sign ‘. The sign is used because MATLAB gives the window vector in column form.
General Remarks 
· In general the stationary signals have biased correlations that tend to zero as k increases. However, the unbiased autocorrelation may have large values due the division by N-k, which takes small values for k close to N.

· The sequence obtained from (3.14)

 produces a positive semi-definite sequence and, as a consequence, the correlation matrix is also positive semi-definite. This property guarantees that the PSD is positive for all frequencies.
· 
[image: image30.wmf]$

$

()()

jj

pxcx

SeSe

ww

=

 using (3.13)

 (see Prob 3.1.5).(3.10)

 and 
· The periodogram is asymptotically unbiased (see Prob 3.1.6).

· It can be shown that the variance does not go to zero as 
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 and, therefore, we conclude that the periodogram is not a consistent estimstor (see Ex 3.1.1).

· Resolution is proportional to the factor 1/N. In other words, the resolution improves with the increase of the length of the signal (see Ex 3.1.2).

Example 3.1.1 Find the periodogram for a WG signal with N=128 and N=1024 and observe the variance (the variability) of the signal. 
Solution: Fig 3.1.1 shows two periodograms by simulation which indicate that the variance does not decreases with the increase of the number of samples. This can also be proved analytically and it is found in advanced texts on this subject.











   ▄

Example 3.1.2: Demonstrate the resolution property of the periodogram.
Solution: Fig 3.1.2 shows two plots of the PSD of a sequence made up of two sinusoids plus a WG noise. The signals were: 
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. The two frequencies were at 0.9425 and at 1.0996 frequency units. The difference between these two frequencies is 0.0571. The resolution for N=64 is 
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. From these values and the figure it is apparent how the resolution property of the periodogram depends on. The effect of the number of samples, N, is also apparent from the figure.
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Windowed Periodogram
We can define a windowed periodogram as the DTFT of the widowed time function 
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 is any desired window. Hence, the periodogram with temporal windowing is given by
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where
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where 
[image: image40.wmf]w

P

 is the average power of the window.

The benefit we derive from time windowing is that the spectra are smoother and, some times, help differentiate different line spectrums (see Fig 3.1.3).

Example 3.1.3 Apply the rectangular and Hamming window to the signal given below and compare their spectrums. 
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Solution: The window provides a trade-off between spectra resolution (main lobe) and spectral masking (side lobe amplitude). In this case the Hamming window has side lobe at about -45 dB comparing with the rectangular window having a side lobe at about -13 dB. Fig 3.1.3 shows that, although the side lobe of the rectangular window just about obscures the 
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p

 frequency, the Hamming window clearly resolves it.











   ▄

It can be shown that that the amount of smoothing in the periodogram is determined by the type of the window that is applied to the data. Selecting the type of window, we must weight our intention between resolution and smoothing.
The following Book MATLAB function calculates, also the temporal windowed data, as the Book MATLAB given in Sec 3.1.1, with the difference that with this program the reader can introduce any one of the several windows giving in the function without introducing it in the command window. This helps if one wants to repeat the simulation using different windows.
Book MATLAB Function for the Periodogram with Temporal Windowed Data:[s,as,ps]= sspperiodogramwin(x,win,L)

function[s,as,ps]=sspperiodogramwin(x,win,L)

%[s,as,ps]=sspperiodogram(x,win,L)

%window names=hamming,kaiser,hann,rectwin,

%bartlett,tukeywin,blackman,gausswin,nattallwin,triang,blackmanharris;

%L=desired number of points (bins) of the spectrum;

%x=data in row form;s=complex form of the DFT;

if (win==2) w=rectwin(length(x));

elseif (win==3) w=hamming(length(x));

elseif (win==4) w=bartlett(length(x));

elseif (win==5) w=tukeywin(length(x));

elseif (win==6) w=blackman(length(x));

elseif (win==7) w=triang(length(x));

elseif (win==8) w=blackmanharris(length(x));

end;

xw=x.*w';

for m=1:L

    n=1:length(x);

    s(m)=sum(xw.*exp(-j*(m-1)*(2*pi/L)*n));

end;

as=((abs(s)).^2/length(x))/norm(w);%as=amplitude spectral density;

ps=(atan(imag(s)./real(s))/length(x))/norm(w);%ps=phase spectrum;

%To plot as or ps we can use the command: plot(0:2*pi/L:2*pi-(2*pi/L),as);

Spectra of Some of the Windows

Fig 3.1.4 shows some of the windows and their spectra. Observe that the rectangular window has the narrowest main lobe, but its first side-lobe is merely about -13 dB. However, the first side-lobe of the Hamming window is about -45 dB. 
Proposed Method for Better Resolution Using Transformation of the rv’s

One of the difficulties is that, if the sequence is short (N small number), we may not be able to sufficiently resolve frequencies being close together. Since we have at hand one realization and we can’t extract another one from the population in the probability space, we propose to create a pseudo-sequence from the data in hand by linear transformation of the rv’s. Next, we overlap (about 25%) these two series. These series can also be multiplied by a window and then processed. 

Note: The proposed modified method is based on the linear transformation of rv’s. 
Example 3.1.4 Compare the spectrum based on the periodogram and the proposed modified one.

Solution: Fig 3.1.5 shows the resolution capabilities of the sequence which is made up from the original sequence as follows: y=0.2*[x  zeros(1,48)]+0.2*[zeros(1,48)  x];. The original signal, a 64-term series, was: x=sin(0.3*pi*n)+sin(0.32*pi*n)+0.5*randn(1,64). The following Book MATLAB function produced the figure.
Book MATLAB Function for Linearly Modified Periodogram

function[ax,ay,w,y]=ssplinear_modified_periodogram(x)
%Book MATLAB function:[ax,ay,w]:ssplinear_modified_periodogram(x)
[sx,ax,px]=sspperiodogramwin(x,2,512);
y1=[x zeros(1,48)]+0.2*rand(1,112);
y2=[zeros(1,48) x]+0.2*rand(1,112);
y=(0.2*y1+(y2)*0.2);
[sy,ay,py]=sspperiodogramwin(y,2,512);
w=0:2*pi/512:2*pi-(2*pi/512);        
%2 implies rectangular window, see Book MATLAB function sspperiodogramwin
%for other windows;to plot we must write in the command window:
%plot(w,20*log10(ax/max(ax)),'k') and similar for the ay;.











   ▄

3.2 The Daniell Periodogram
Daniell suggested that, for a DFT periodogram, the sampled PSD 
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 at a particular frequency is found by averaging K points on either side of this frequency. The Daniell formula is
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This procedure is equivalent to passing the periodogram through a low pass filter.

3.3 The Bartlett Periodogram
The variance of the periodogram, as given in 
(3.9)

, presupposes an ensemble averaging for variance decrease. However, for a single realization the variance does not decreases as  GOTOBUTTON ZEqnNum953016  \* MERGEFORMAT  (inconsistent estimator) and, hence, there is a need for other approaches to reduce the variance. We can improve the statistical properties of the periodogram by replacing the expectation operator with averaging a set of periodograms. Fig 3.3.1 shows the ensemble averaging effect on the variance using ten realizations of the PSD only. The variance of one realization is about 55 and the variance of the ensemble is about 2.5. The number of realizations in this case was 30. The reader should compare this figure with Fig 3.1.1. The following Book MATLAB script file produces the figure Fig3.3.1.
Book MATLAB m-File: fig3_3_1
%m-file:fig3_3_1
N=256;
for m=1:30
    x(m,1:N)=randn(1,N);
end;
w=0:2*pi/512:2*pi-(2*pi/512);
subplot(2,1,1);plot(w,20*log10(abs(fft(x(10,:),512))),'k');
subplot(2,1,2);plot(w,20*log10(abs(fft(sum(x,1),512)))/30,'k');
xlabel('Freq. per unit');ylabel('PSD in dB');

Bartlett proposed to split the data in K non-overlapping segments, which are assumed to be statistically independent. This condition presupposes that the autocorrelation of each segment decays much faster than the length of the segment. The N samples of the data signal is divided in K non-overlapping segments of M samples each such that 
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Each of the segments has the spectrum
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and, hence, the Bartlett average periodogram is given by
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See Fig 3.3.2 for a diagrammatic representation of the above equations defining the Bartlett approach. Since the power spectrum is due to the reduced number of terms, M<<N, comparing to the total available data, the resolution reduces from the order of 1/N to the order of 1/M. This implies that the resolution is reduced by N/M=K comparing to the resolution of the original data set. It can be shown that the variance is reduced by the same amount. 

The following Book MATLAB function produces the Bartlett periodogram with a rectangular window. 
Book MATLAB function: sspbartlettpsd(x,k,win,L)

function[s,as,ps]=sspbartlettpsd(x,k,L)
%x=data;k=number of sections; 
%L=number of points desired in the FT domain;
%M=number of points in each section;kM<=N=length(x);
%the number 2 in the text function means rectangular window;
M=floor(length(x)/k);
s=0;
ns=1;
for m=1:k
    s=s+sspperiodogramwin(x(1,ns:ns+M-1),win,L);
    ns=ns+M;
end;
as=((abs(s)/k).^2)/length(x);
ps=(atan(imag(s/k)./real(s/k)))/length(x);
Linear Transformation Modified Method
Fig 3.3.3 is produced, also, to demonstrate the ability of the proposed modified method that uses a linear transformation of the signal at hand to produce a longer pseudo-realization of the data and thus improve the resolution. The data for this figure were the following: n=0:127; x=sin(0.3*n*pi)+sin(0.315*n*pi)+0.5*randn(1,128); as indicated above. Fig3.3.3a shows the PSD of the 128-long sequence using the Bartlett approach with two sections of 64 elements each. The window for this case was the rectangular window. Fig 3.3.3b is the same PSD with the difference that a Hamming window is used. The last three rows of same figure present the three proposed modified approaches, with the first column presenting the use of the rectangular window and the second column the use of the Hamming window. The three different Book MATLAB functions for producing the modified spectrums are given below. The figure shows the average PSD of 10 realizations. However, since the amplitude spectrum as, for example, is an Rx512 matrix, we can plot only one realization by invoking the command: plot(as(6,:). Hence, in this case the 6th realization, out of R such realizations, is plotted. In the modified cases, the sequences were split in to two equal sequences, as was done in case Fig 3.3.3a and b.
Book MATLAB Functions for the Modified Bartlett Spectrum

Modified No 1

function[s,as,ps,apsd]=ssp_aver_mod_bartlettpsd1(x,k,win,L,R)

%x=data; k=number of sections; L=number of points 

%desired in the FT domain; M=number of points in each

%section;kM<=N=length(x);R=number of realizations;

%win=2 for rectwin, 3 for hamming etc, see sspperiodogramwin function;

%s, as and ps are RxL amtrices;apsd is the average spectrum of the R realizations;

%if desired we can plot the amplitude spectrum of one realization:

%plot(as(5,1:512));

for r=1:R

xr(r,:)=([x  zeros(1,floor(0.8*length(x)))]+...

[zeros(1,floor(0.8*length(x)))  x+0.1*rand(1,length(x))])*.2;

[s(r,:),as(r,:),ps(r,:)]=sspbartlettpsd(xr,k,win,L);

end;

apsd=sum(as,1)/R;
Modified No 2
function[s,as,ps,apsd]=ssp_aver_mod_bartlettpsd2(x,k,win,L,R)

%x=data; k=number of sections; L=number of points 

%desired in the FT domain; M=number of points in each

%section;kM<=N=length(x);R=number of realizations;

for r=1:R

x1(r,:)=[ x*0.5+0.05*randn(1,length(x))  x*0.5+0.05*randn(1,length(x))];

[s(r,:),as(r,:),ps(r,:)]=sspbartlettpsd(x1,k,win,L);

end;

apsd=sum(as,1)/R;
Modified No 3

function[s,as,ps,apsd]=ssp_aver_mod_bartlettpsd3(x,k,win,L,R)

%x=data; k=number of sections; L=number of points 

%desired in the FT domain; M=number of points in each

%section;kM<=N=length(x);R=number of realizations;

for m=1:R

x1(m,:)=[x  0.2*x+0.1*randn(1,length(x))];

[s(m,:),as(m,:),ps(m,:)]=sspbartlettpsd(x1,k,win,L);

end;

apsd=sum(as,1);
3.4 Blackman-Tukey (BT) Method 
Because the correlation function at its extreme lag values is not reliable due to the small overlapping of the correlation process, it is recommended to use lag values of about 30-40% of the total length of the data. The Blackman-Takey estimator is a windowed correlogram and is given by
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where w(m) is the window with zero values for 
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. This window is known as the lag window. The above equation can also be written in the form
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where we applied the DTFT frequency convolution property (the DTFT of the multiplication of two functions is equal to the convolution of their Fourier transforms). Since windows have a dominant and relatively strong main lob, the BT estimator corresponds to a “locally” weighting average of the periodogram. Although the convolution smoothes the periodogram, it reduces resolution in the same time. It is expected that the smaller the M, the larger the reduction in variance and the lower the resolution. It turns out that the resolution of this spectral estimator is on the order of 1/M, whereas its variance is on the order of M/N. Observe that the trade off between resolution (smoothing) and variance depends on the total number of lags (M) we retain.
Book MATLAB Function for BT Periodogram: [s,as,ps]=sspBTperiodogram(x,win,per,L)
function[s,as,ps]=sspBTperiodogram(x,win,per,L)
%[s,as,ps]=sspbtperiodogram(x,win,L)
%window names=hamming,kaiser,hann,rectwin,
%bartlett,tukeywin,blackman,gausswin,nattallwin,triang,blackmanharris;
%L=desired number of points (bins) of the spectrum;
%x=data in row form;s=complex form of the DFT;NOTE:per=the percentage
%of points (length(rxt/2))deleted from the correlation function
%to decrease the edge effect;
rxt=xcorr(x,'biased');
wn=[zeros(1,floor((length(rxt)*per/2)))  ones(1,length(rxt)-(...
    2*floor((length(rxt)*per/2))))  zeros(1,floor((length(rxt)...
    *per/2)))];
rx=rxt.*wn;
if (win==2) w=rectwin(length(rx));
elseif (win==3) w=hamming(length(rx));
elseif (win==4) w=bartlett(length(rx));
elseif (win==5) w=tukeywin(length(rx));
elseif (win==6) w=blackman(length(rx));
elseif (win==7) w=triang(length(rx));
elseif (win==8) w=blackmanharris(length(rx));
end;
rxw=rx.*w';
for m=1:L
    n=1:length(rx);
    s(m)=sum(rxw.*exp(-j*(m-1)*(2*pi/L)*n));
end;
as=((abs(s)).^2/length(x))/norm(w);%as=amplitude spectral density;
ps=atan((imag(s)./(real(s)+eps))/((length(x))/(norm(w)+eps)));%ps=phase spectrum;
%To plot as or ps we can use the command: plot(0:2*pi/L:2*pi-(2*pi/L),as);

We propose to increase the window length in steps and then average the spectra. This will produce better resolution but with, somewhat, increase of variance of the spectrum. Fig 3.4.1 shows clearly the ability to resolve close frequencies by using the proposed averaging method. As it was anticipated, the variance increases. We observe that using 40% of the correlation, the resolution from the lower peak was about 5 dB, whereas the average procedure gave resolution close to 20 dB 
A second modified method is put forward for the BT method by using linear transformation to rv’s. The upper left part of Fig 3.4.2 shows the original data: 
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. The second signal is equal to the original plus a linear transformation of the original:
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 EMBED Equation.DSMT4  [image: image57.wmf]*hamming(112)';

. This signal is plotted in the upper right side of Fig 3.4.2. The middle section and left part of Fig 3.4.2 shows the BT PSD of the original sequence on a linear scale. The right side of the middle section depicts the BT PSD of the modified sequence on a linear scale. The bottom part of the figure shows the spectrums in the log-linear scale respectively. For both cases the percentage of eliminating the trailing correlations terms was 40% of the one-sided correlation or 80% of the symmetric case given by the MATLAB function xcorr(x).
A different modified approach, without overlapping, is given below by the following Book MATLAB program. The sequences and their spectrums are shown in Fig 3.4.3. 

Book MATLAB program for modified BT method using rv’s transformation

n=0:63;
x=sin(0.3*pi*n)+sin(0.32*pi*n)+0.8*randn(1,64);

z=[x*0.5   x*0.25+0.05].*hamming(128)’;

[sx,asx,apx]=sspbtperiodogram(x,2,0.4,512);

[sz,,asz,apz]=sspbtperiodogram(z,2,0.4,412);

It is interested to see, by creating an ensemble of modified sequences, if the resolution increases or not. Fig 3.4.4a shows the BT PSD of the sequence: 
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, and Fig 3.4.4b shows the average (20 sequences) modified BT PSD. Figure 3.4.4b was created using the following Book MATLAB function: 
Book MATLAB function for modified BT method using rv’s transformation and averaging: sspav_modifiedbtpsd
function[sz,az,pz]=sspav_modified_btpsd(x,win,per,avn,L)
%win=2 implies rectangular, see the function sspbtperiodogram
%to identify the appropriate numbers for other windows;per=
%percentage of deleted one sided aucoralation function;
%avn=number of ensemble sequences to be averaged;L=number
%of frequence bins;
for m=1:avn
    z1(m,:)=[x*rand*0.5  x*rand*0.2+...
        0.05*(rand-0.5)].*hamming(2*length(x))';
end;
z=sum(z1,1);
[sz,az,pz]=sspbtperiodogram(z,win,per,L);
3.5 The Welch Method
Welch proposed modifications to Bartlett method, as follows: data segments are allowed to overlap and each segment is windowed prior to computing the periodogram. Since, in most practical applications, only a single realization is available, we create smaller sections as follows:
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where w(n) is the window of length M, D is an offset distance and K is the number of sections that the sequence {x(n)} is divided into. Pictorially, the Welch method is shown in Fig 3.5.1.


The ith periodogram is given by
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and the average Welch periodogram is given by
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If D=M, then the segments do not overlap and the result is equivalent to the Bartlett method with the exception that the segments are windowed.
Book MATLAB Function for Welch Periodogram: 
[s,as,ps,K]=sspwelchperiodogram(x,w,D,L)
function[s,ast,ps,K]=sspwelchperiodogram(x,win,frac,frac1,L)
%function[as,ps,s,K]=sspwelchperiodogram(x,win,frac,frac1,L);
%x=data; M=section length;
%L=number of samples desired in the frequency domain;
%win=2 means rectwin, number 3 means hamming window;
%see sspbtperiodogram function to add more windows if you desire;
%frac defines the number of data for each section, depending on the data
%length it is recommended the number to vary between 0.2 and 1;
%frac1 defines the overlapping of the sections, it is
%recommended the frac1 to very from 1 (no overlap) to 0.5
%which means a 50% overlap; M<<N=length(x);
if (win==2) w=rectwin(floor(frac*length(x)));
elseif (win==3) w=hamming(frac*length(x));
end;
N=length(x);
M=floor(frac*length(x));
K=floor(floor((N-M+floor(frac1*M)))/floor(frac1*M));%K=number of processings;
s=0;as=0;
for i=1:K
    s=s+fft(x(1,(i-1)*(floor(frac1*M))+1:(i-1)*floor(frac1*M)+M).*w',L);
    as=as+abs(s);
end;
ast=as/(M*K);%as=amplitude spectral density;
ps=atan(imag(s)./real(s))/(M*K);%phase spectral density; 
The MATLAB function is given as follows:

P=spectrum(x,m,ovelap)%x=data; m=number of points of each section

                           %and must be a power of 2;the sections are windowed by a

                           %a hanning window;P is a (m/2)x2 matrix whose first column is the

                           %power spectral density and the second is the 95% confidence interval;
                           %if m<256 the spectrum will be given for 256 points; overlap is 


   %the number of points which will overlap, must be less than m;
Fig3.5.2 was created as follows: data- 
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 Fig 3.5.2a is produced using the Book MATLAB function sspwelchperiodogram(x,win,frac,frac1,L) with a rectangular window. Fig 3.5.2b is produced using the same BOOK MATLAB function with the Hamming window. Fig 3.5.2c is produced using the MATLAB function spectrum(x,m,overlap).
3.6 Proposed Modified Methods for Welch Periodogram
Modified method using different types of overlappings

It is evident from Fig 3.5.1 that, if the lengths of the sections are not long enough, frequencies close together can’t be differentiated. Therefore, we propose a procedure, defined as symmetric modified Welch method, and its implementation is shown in Fig 3.6.1. Windowing of the segments can also be incorporated. This approach and the rest of the proposed schemes have the advantage of progressively incorporating longer and longer segments of the data and thus introducing better and better resolution. In addition, due to the averaging process, the variance decreases and smoother periodograms are obtained but not as smooth as the Welch method. It is up to the reader to decide between smoothness of the periodogram and resolution of frequencies. Fig 3.6.2 shows another proposed method which is defined as the asymmetric modified Welch method. Fig 3.6.3 shows another suggested approach for better resolution and reduced variance. The procedure is based on the method of prediction and averaging. This proposed method is defined as the symmetric prediction modified Welch method. This procedure can be used in all the other forms, e.g. non-symmetric. The above methods can also be used for spectral estimation if we substitute the word periodogram with the word correlogram.
Fig 3.6.4a shows data created by the equation
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and for 128 sample points. Fig 3.6.4b shows the Welch periodogram result using the MATLAB function, p=spectrum(x,64,32); This function creates a spectrum with 256 frequency bins and uses Hanning window for each of the segments. Fig 3.6.4c shows the proposed asymmetric modified Welch method. Our proposed method gives much better resolution with a very small increase in variance. 
Modified Welch Method Using rv’s Transformation 
Fig 3.6.5a shows the result of the Welch method for the signal 
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. The signal was split into two sections with 50% overlap. For Fig 3.6.5b, the following transformed signal was used by incorporating a linear transformation of the rv’s: 
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. For this signal the Welch method was used splitting the series into two parts and using 50% overlapping. The figure was produced using the following Book MATLAB program:

Book MATLAB program for comparing the Welch method with the proposed modification by using transformation of the rv’s
>>n=0:127;
>>x=sin(0.3*pi*n)+sin(0.315*pi*n)+0.5*randn(1,128);
>> [sx,as ps,K]=sspwelchperiodogram(x,2,0.5,0.5,512);% 50% overlap;
>> plot(w,as/max(as),'k')
>> z=[x   0.1*x+0.05*randn(1,128)];
>> [sz,asz psz,Kz]=sspwelchperiodogram(z,2,0.5,0.5,512);

>> plot(w,asz/max(asz),'k')

PROBLEMS

3.1.1 Verify (3.3).
3.1.2 Verify (3.5).

3.1.3 Verify (3.7).
3.1.4 Verify (3.11).

3.1.5 Verify the relation 
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 using standard biased autocorrelation sequences.
3.1.6 Show that the periodogram is asymptotically unbiased.
3.1.7 Create a signal with two sinusoids close in frequency and length 512. Find the periodogram and the correlogram for this signal. Next, reduce its length by 128, 256 and 284 elements and do the same as above. In each case observe the results. Next, repeat the whole procedure; but before finding their spectrums, multiply the data with the Hamming window and compare results.
3.2.1 Create a periodogram and apply Daniell’s method for L=1, L=2, L=3 and observe the resulting spectrums.

3.3.1 Find the bias and the variance of the Bartlett periodogram.
3.3.2 Do the following and observe the results: 1) Create a signal of two close in frequency sinusoids plus white noise with N=512 values. 2) Overlay the plots of 50 periodograms with rectangular window and then average. 3) Overlay the plots of 50 Bartlett estimates with I=4 (four sections, M=128) and then average. 4) Overlay the plots of 50 Bartlett estimates with I=8 (eight sections, M=64) and then average.

3.3.3 Repeat the modified Bartlett method as it was proposed and vary the constants in the transformation of the rv’s, lengths of data, window types and observe the results.
3.4.1 Use the Blackman-Tukey periodogram function and observe the spectrums for different windows, different variances of the white additive noise and different sinusoids having close frequencies or not.
3.5.1 Use the Welch approach with different variances of the noise, different distance between frequencies of sinusoids, different windows, and different lengths of segments.

HINTS, SUGGESTIONS AND SOLUTIONS

3.1.1
Multiply (3.2) by 
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 since the integral is zero for 
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3.1.3
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3.1.4
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3.1.5

[image: image76.wmf]1

0

1

()()(),()constant,v()=white noise with v

ariance one (1)

N

m

ynhmvnmh

N

-

=

=-=

å

.


[image: image77.wmf]1

0

1

()()(2);{()()}()1(),;

N

jjm

v

m

YeymeEvnvmrkkkmn

N

ww

d

-

-

=

====-

å



[image: image78.wmf]$

11

2

y

00

()()()1(3);from (2.46),S()()()

NN

jjkjkjjj

py

v

kk

VerkekeeHeSe

wwwwww

d

--

--

==

=====

åå

(4). 
[image: image79.wmf]11

00

1

(){()()}()(){()()}

NN

y

ps

rkEynynkhphsEvnpvnks

N

--

==

=-=---=

åå



[image: image80.wmf]111

000

11

()()()()()()01(5)

NNN

h

psp

hphsksphphpkrkforkN

NN

d

---

===

+-=-=££-

ååå


Using the DTFT of (5), we find: 
[image: image81.wmf]2

()()()

jjj

yh

SeSeHe

www

=

@

 and, hence, from (4) we obtain the desired results.

3.1.6

To show that the periodogram is asymptotically unbiased we must show that the mean value of the correlation tend to zero as 
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 (1). Taking into consideration the correlation symmetry we write:
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Taking the ensemble average of the periodogram, we obtain
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Since the ensemble average of the periodogram (DTFT) is equal to DTFT of the product 
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 is the DTFT of the Bartlett window. Since the DTFT of the Bartlett window approaches a delta function as N approaches infinity, the convolution becomes 
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found using the finite number geometric series). But (1) indicates the FT of the multiplication of two functions and, hence, the FT of the Bartlett periodogram of each section is 
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. But the FT of the Bartlett window tends to a delta function for large number of terms and hence it is asymptotically unbiased. It can be shown that the variance of the periodogram is given by (for large number of terms) 
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 (an inconsistent estimator since the variance does not go to zero). Therefore, 
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, which tends to zero as the number of segments increase (the Bartlett periodogram is an asymptotically consistent estimator).
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