CHAPTER 8

NONLINEAR FILTERING



8.1 Introduction



Nonlinear filtering techniques remove unknown interference to one-dimensional signals f(n) or to two-dimensional signals (images) f(m,n), where the integers m and n have, in practice, finite images: .  The basic problem is to use the received (or detected) signal , which is corrupted by noise, and try to extract the original signal , which is another random vector. Although it is rather difficult to find a useful solution, by making simplifications we may be able to solve the problem with the available methods at hand. Complexity of the reduced solution depends, a) on the model of the underlying signal s, b) the nature of the additive noise (corruption) to the signal, and c) the accuracy of the solution with respect to the above assumptions.
	It is known that when the noise is Gaussian process and linearly added to the signal, the theory of the linear filtering give optimum solutions. In this case, the mean square error is used as the criterion of accuracy.


	There are cases, and this is more pronounced in images, that the intensity of a pixel is due to the signal (desired image) plus scattering light from different parts of the environment during its formation. In such a situation the white noise additive model seldom holds. The intensity of each pixel of an image created by an acquisition system is usually a multiplicative process with respect to background illumination. This is equivalent to say that the ith pixel intensity is equal  is the signal intensity and  is the noise intensity. Another important noise is the impulsive noise, which is recognized if the pixel values do not change at all or change slightly and some pixel values change “enormously”, that is, their change is highly visible. Because this type of noise is hard to handle with linear filters, the use of nonlinear filters is more appropriate. In this chapter we shall deal with only with order-based filters, which have been employed successfully to pass the desired signal (image) structures while suppressing noise.



















8.2 Statistical Preliminaries

Signal and Noise Model, Robustness

The simplest and most important case of signal and noise is the additive white noise model where the signal s and noise v are assumed independent. The white indicates that vi’s are independent or at most uncorrelated. For this model we write

		
As we mentioned in the previous section the multiplicative noise model is expressed as

		
or in expanding form

		
where si’s are independent of vi’s.  
Another type of noise is the impulsive noise, also known as outliers. An outlier can be defined as an observation which appears to be inconsistent with the remaining data. 
	
Point Estimation



In a typical case we are faced with the problem of extracting parameter values from a discrete-time waveform or a data set. For example, let’s have an N-point data set {x(0)   x(1)   …  x(N-1)} which depends on an unknown parameter . Our aim is to determine  based on the data or define an estimator

		

where g is some function (statistic) of the data, and its numerical value is called an estimate of   .


	To be able to determine a good estimator we must model mathematically the data. Because the data are inherently random, we describe them by the probability density function (pdf) or  which is parametrized by the unknown parameter . This type of dependence is denoted by semicolon.

	As an example, let x(0) be a random variables from a Gaussian population and with mean value . Hence, the pdf is

		




The plots of  for different values of  are shown in Fig 8.2.1. From the figure we can infer that, if the value of x(0) is positive, it is doubtful that  and, hence, the value  is more probable. In the area of point estimation the specification of the appropriate pdf is critical in determining a good estimator. In the case when the pdf is not given, which is more often than not, we must try to choose one that is consistent with the constraints of any prior knowledge of the problem, and furthermore that is mathematically tractable.



        Once the pdf has been selected, it our concern to determine an optimal estimator (a function of the data). The estimator may be thought of as a rule that assigns a value to  for each realization of the sequence {x}N. The estimate of  is the value of  obtained at a particular realization {x}N. 

Estimator Performance
 

Let the set  of random data is the sum of a constant c and a zero mean white noise v(n) 

		
Intuitively we may set as estimate of c the sample mean of the data

		
From Fig 8.2.2 we find that x(0)= 0.2837 and we may accept the random variable x(0) as another estimate of the mean

		
The basic question is: which of these two estimators will produce the more accurate mean value. Instead of repeating the experiment a large number of times, we proceed to prove that sample mean is a better estimator than x(0).  To do this we first look at their mean value (expectation):

		
 

		
which indicates that on the average both estimators produce the true mean value of the population.  Next, we investigate their variances which are (see Prob 8.2.1)

[bookmark: ZEqnNum815536]		

		 



The above results show that , and the  approaches zero as . To prove  , we assume that v(n)’s are iid and have the same variance σ2. 

Biased and Unbiased Estimator

An estimator which on the average yields the true value of the unknown parameter is known as unbiased one and, mathematically, is given by

		

Where (a,b) denotes the range of possible values of  (see Prob 8.2.2).
	An unbiased estimator is given mathematically by the relation (see Prob 8.2.3)

		
where the bias of the estimator is given by
 

		

Cramer-Rao Lower Bound (CRLB)

It is helpful to be able to place a lower bound on the variance of any unbiased estimator. The Cramer-Rao bound is the appropriate measure. It assures us if the estimator is the MVU estimator or provide us with a benchmark to compare the performance of the estimator.

Theorem 8.2.1 (Cramer-Rao Lower Bound) It is assumed that the pdf  satisfies the “regularity” condition

		


where the expectation is taken with respect to . Then the variance of any unbiased estimator  must satisfy

[bookmark: ZEqnNum757624]		

where the derivative is evaluated at the true value of θ and the expectation is taken with respect to . Furthermore, an unbiased estimator may be found that contains the bound for all θ if and only if 

[bookmark: ZEqnNum722325]		

for some function of g and I. That estimator, which is the MVU estimator, is =g(x), and the minimum variance (MV) is 1/I(θ).
												      ▄

 	Let’s consider a number of observations

		
where v(n) is a WGN  with variance σ2 . To determine the CRLB for c (v’s are iid) we find the pdf

		
Taking the first derivative, we obtain

[bookmark: ZEqnNum306467]		
Differentiating once more we obtain

		
Since the second derivative is a constant, from  we obtain the CRLB

		
Comparing  with  we find the following correspondent relations

		
These relations give us the MV and the MVU estimator. 

Mean Square Error Criterion



When we seek the minimum mean square estimator, we can use a simplified form of the estimator where the statistic is a linear combination of the random data set . Hence we need to determine  such that 

[bookmark: ZEqnNum304163]		
is minimized. Since expectation is a linear operation, the above equation becomes

[bookmark: ZEqnNum956128]		
The above equation is quadratic in an’s and setting the derivatives equal to zero we obtain the following set of equations (see Prob 8.2.4)

	
or

[bookmark: ZEqnNum897860]		


where  and .
From  we can also proceed as follows:

		
   which shows that the mean square error is the sum of the error due to the variance of the estimator as well as its bias. Constraining the bias to zero, we can find the estimator, which minimizes its variance. Such an estimator is known as the minimum variance unbiased estimator (MVUE).

Maximum Likelihood Estimators

Very often, MVU estimators may be difficult or impossible to determine. For this reason, in practice many estimators are found using the maximum likelihood function (MLE) principle. Besides being easy to implement, its performance is optimal for large number of data. The basic idea is to find a statistic

		

so that if the random variables x(m)’s take the observed experimental value x(m)’s, then the number  will be a good estimate of θ. 


Definition 8.2.1: Let   be a random vector with density function

. The function

		

is considered as a function of the parameter  , is called the likelihood function (l identifies the likelihood function with one parameter(scalar)).
												      ▄
	The random variables x(0), x(1), … , x(N-1) are iid with a density function p(x;θ), then the likelihood function is

[bookmark: ZEqnNum131677]		

Example 8.2.1 Let x(0), x(1), … , x(N-1) be random sample from the normal distribution . Using , we write

		
Since the likelihood function L(θ)  and its logarithm ln{ L(θ)} are maximized for the same value of the parameter  θ , we can use either L(θ)  or  ln{ L(θ)}. Therefore, 

[bookmark: ZEqnNum796777]		
and the solution of  for θ is

		


The above equation shows that the estimator maximizes L(θ)  . Therefore, the statistic g(.) above (the sample mean value of the data) is the maximum likelihood estimator of the mean, . Since , the estimator is un unbiased one.
												      ▄


Definition 8.2.2 If we choose a function  such that θ is replaced by g(x), the likelihood function L is maximum. That is, L(g(x); x(0), …, x(N-1)) is at least as great as L(θ; x(0), x(1), …, x(N-1)) for all θ, or in mathematical form

		
												      ▄

Definition 8.2.3 Any statistic whose expectation is equal to a parameter θ is called an unbiased estimator of the parameter θ .Other wise, the statistic is said to be biased.

		
												        ▄


Definition 8.2.4 Any statistic that converges stochastically to a parameter θ is called a consistent estimator of that parameter. Mathematically we write .
												      ▄

	If as  the relation

	


holds, the estimator  is said to be a consistent estimator. If, in addition, as the relation 

	


holds is said that the estimator   is said to be asymptotically unbiased. Furthermore, if as the relation

	

holds, then it is said that  is asymptotically efficient. 

Example 8.2.2 Let the observed data x(n) be the set 

		
where c is an unknown constant greater than zero, and v(n) is white Gaussian noise with zero mean and with unknown variance c. The pdf is

[bookmark: ZEqnNum723457]		
Considering  as a function of c, it becomes a likelihood function L(c:x). Differentiating its natural logarithm, we obtain

[bookmark: ZEqnNum425792]		
where a multiplication of the pdf by a constant does not change the maximum point. From  we obtain

	

Solving for  and keeping the positive sign of the quadratic root, we find

[bookmark: ZEqnNum727274]		

Note  >0 for all values of the summation under the square root. Since

		

implies that the estimator is biased. From the law of the large numbers as 

		
and, therefore,  gives

	
which indicates that

		
And, hence, the estimator is a consistent estimator. 
												      ▄

Example 8.2.3 It is required to find the maximum likelihood estimator for the mean m and variance  of a set of data {x(n)} provided by a Gaussian random generator.

	The Gaussian pdf  for one rv is 

		
Its natural logarithm is

[bookmark: ZEqnNum477180]		
The likelihood function for the data (iid) is given by

		
and its logarithm is 

[bookmark: ZEqnNum314938]		
Substituting  in  we obtain

[bookmark: ZEqnNum618276]		
There are two unknowns in the log of the likelihood function. Differentiating  with respect to the mean and variance, we obtain

		
Equating the partial derivatives to zero, we obtain

[bookmark: ZEqnNum843547]		

[bookmark: ZEqnNum111169]		
 For the estimate variance to be different than zero,  reduces to

		
Therefore, the MLE of the mean of a Gaussian population is equal to the sample mean, which indicates that the sample mean is an optimal estimator.

	Multiplying  by  leads to

		
Therefore, the MLE of the variance of a Gaussian population is equal to the sample variance.
												       ▄
       
	Let the pdf of the population be the Laplacian (a is positive constant)

		
Then the likelihood function corresponding to the above pdf for a set of data {x(n)}(iid) is

[bookmark: ZEqnNum594641]		
	Before we proceed further, we must define the term median for a set of random variables. Median is the value of a rv of the set when half of the rv’s of the set have values less than the median and half have higher values (odd number of terms). Hence, the 
med{1,4, 2,3,5,9,8,7,11}=med{1,2,3,4,5,7,8,9,11}=5.

Definition 8.2.5 Let be a rv whose cdf  (distribution) is Fx . The point xmed is the median of x if

		
												       ▄



	From  we observe that the derivative of  with respect to θ is negative if θ is larger than the sample median, and positive if it is less than the sample median (remember that  for real values). Therefore, the estimator is (see Prob 8.2.8)

		

which maximizes  for the Laplacian pdf likelihood function.    





Note: a) From the above discussion we have observed that the minimization of   created from a Gaussian distribution is equivalent in minimizing . The minimization resuts in finding the estimator  which is the sample mean of the data x(n). b) Similarly the minimization of the likelihood function    created from a Laplacian distribution is equivalent in minimizing . This minimization results in finding the estimator

 .

8.3 The Mean Filter  

Let’s consider the following signal

		
where v(n) is WGN with zero mean and variance about one. For the deterministic signal we have selected a) a constant, b) a ramp, and c) a step function. The form of the functions s(n)’s, v(n)’s, and x(n)=s(n)+v(n)’s are shown in Fig 8.3.1.
	For simplicity in our study we shall use filters with odd number of elements and, hence, K=2k+1. Under these circumstances the output of a mean filter at time n is given by

		

Since, in the above equation for any n we average only 2k+1 values of the signal sample from –k to +k with middle point n, the process is equivalent in multiplying the original signal with a window called the filter window. Because this window is moving with each new n, it is also known as the moving filter window. The signal samples which contribute to the output at time n are: . For example, with filter length 5 and signal length 50, the output signal is given by 

		
	Fig 8.3.2 shows the noisy signal x(n) and its filtered version for the mean filter of k=1 and k=3. The signal s(n) is a step function with values 1 and 2.5. The random noise v(n) is a WGN with mean zero. From the figure we note that the output becomes smoother as the filter window increases, and the step change of the signal becomes a ramp. This indicates that the edges in images (abrupt change from white to black, for example) will be smoothed out, like looking at the image through a lens that is slightly out of focus.

Book MATLAB Function for One-dimensional Mean Filter:
[yo1]=ssp_one_dimens_mean_filter(x,k) 
function[yo1]=ssp_one_dimens_mean_filter(x,k)
%filter length 2k+1;x=s+v=noisy signal
for n=1:length(x)-(2*k+1)
    for j=0:2*k
        y(j+1)=x(n+j);
    end;
    yo1(n)=sum(y)/(2*k+1);
end;

	In a manner similar to the one-dimensional case, the center of a moving window is placed at every pixel and the mean operation uses the (2k+1)(2k+1) pixel values inside the window and the result of the operation is the output at the window location.


Example 8.3.1 The three-dimensional signal used in this example is sum of a two-dimensional step function plus white noise as shown in the upper part of Fig 8.3.3. The lower part of  Fig 8.3.3 shows the output of a two-dimensional mean filter with sliding window dimensions . The Book MATLAB functions and programs which produce Fig 8.3.3 are given below. 

Book MATLAB Function Producing the Noisy Step Signal:
[z]=ssp_2d_step_signal(N,M,i)

function[z]=ssp_2d_step_signal(N,M,i)
%N=points in y direction;M=points in x direction;
%i=controlling intensity of the noise;
%z=matrix presenting the step function and noise;
xy=i*rand(N,M);
xys=2.5*ones(N,M)+i*rand(N,M);
z=[xy xys];

 
Book MATLAB Function that  Produces Output from a Mean Filter:
[yo2]=ssp_2d_mean_filter(z,k)

function[yo2]=ssp_2d_mean_filter(z,k)
%z=2-dimensional signal with noise, matrix;
%2k+1=width and length of sliding window;
for i=1:length(z(1,:))-(2*k+1)
    for j=1:length(z(:,1))-(2*k+1)
        zw=z(i:i+2*k,j:j+2*k);
        yo2(i,j)=sum(sum(zw))/((2*k+1)^2);
    end;
end;

To produce Fig 8.3.3 we used the following MATLAB program:
N=64;M=32;i=0.5;
z=ssp_2d_step_signal(N,M,i);
k=3;
yo=ssp_2d_mean_filter(z,k);%yo=57x57 matrix;
[X1,Y1]=meshgrid(1:64);[X,Y]=meshgrid(1:57);
subplot(2,1,1);
surfl(X1,Y1,z);
subplot(2,1,2);
surfl(X,Y,yo);
												   ▄
 
8.4 The Median Filter
When a single impulse exists in the signal, the mean filter spreads the impulse and reduces the amplitude. On the other hand, the median filter totally eliminates the impulse, provided that its width is less than k+1 of a window length N=2k+1. Fig 8.4.1 shows the effect of mean and median filter on one dimensional signal. Note the different effect on the input these two figures have.

Book MATLAB Function for One-dimensional Median Filter:
[yo1]=ssp_1d_median(x,k)

function[yo1]=ssp_1d_median_filter(x,k)
%one-dimensional filter; 2k+1=width of 
%sliding window;x=data vector to be filtered;
for n=1:length(x)-(2*k+1)
    w=x(n:n+2*k);
    yo1(n)=median(w);
end;
%the otput of the filter yo1 has length equal to
%length(x)-(2*k+1); median(.) is a MATLAB function;

	The Book MATLAB filer for two-dimensional median filter is given below.

Book Two-Dimensional Median MATLAB Filter Function:

function[yo2]=ssp_2d_median_filter(x,k)
%x=matrix (image);(2k+1)(2k+1)=number of
%matrix elements of sliding window;
for i=1:length(x(1,:))-(2*k+1)
    for j=1:length(x(:,1))-(2*k+1)
        xw=x(i:i+2*k,j:j+2*k);
        cvxw=xw(:);
        yo2(i,j)=median(cvxw);
    end;
end;


Fig 8.4.2 shows in the upper part the two-dimensional step signal with noise and a pulse. The middle figure shows the output of a median filter with k=2. The bottom figure is the output of the median filter with k=4. Note the complete disappearance of the pulse in the noisy signal.  

8.5 Trimmed-Type Mean Filter
(r-s)-Fold Trimmed Mean Filters 
It can be easily shown by simulation that the mean filter is more efficient in deleting Gaussian noise than the median filter. However, the mean filter is less efficient in removing impulse noise. As long as the length of the impulse is less than k+1, where 2k+1 is the width of the sliding window, the median filter completely eliminates the impulse noise. When both Gaussian and impulse noise are present, the trimmed mean filter becomes o compromise between mean and median filter.

	One of the forms of the trimmed mean filter is the (r-s)-fold trimmed mean filter, which is obtain by sorting the samples, omitting a total r+s samples:  and 


 and then average the remaining ones. The subscript with parenthesis indicates and ascending random values, e.g.  . Hence, we write

		
where N=2k+1 is the width of the sliding window. 
	The following Book MATLAB function executes the operation of a one-dimensional trimmed-mean filter 

Book MATLAB for One-Dimensional Trimmed Mean Filter:
[yo1]=ssp_1d_trimmed_mean_filter(x,r,s,k)

function[yo1]=ssp_1d_trimmed_mean_filter(x,r,s,k)
%x=input noisy signal;r=integer;s=integer;
%r+s<N=2k+1=width of sliding window;
for n=1:length(x)-(2*k+1)
    for j=0:2*k
        y(j+1)=x(n+j);
    end;
    ys=sort(y);%sort(.)=MATLAB function;
    ystr=ys(r+1:2*k+1);
    yo1(n)=sum(ystr)/(2*k+1-r-s);
end;


Fig 8.5.1 compares the one-dimensional trimmed mean filter with the median one. We also observe the effect of changing the width of the sliding window.
	The following Book MATLAB function executes the two-dimensional trimmed-mean filter.

Book MATLAB Two-Dimensional Trimmed-Mean Filter Function:
[yo2]=ssp_2d_trimmed_mean_filter(x,r,s,k)


function[yo2]=ssp_2d_trimmed_mean_filter(x,r,s,k)
%x=input 2d signal (matrix);r=integer;s=integer;
%(2k+1)x(2k+1)=the number of elements inside the 
%sliding window;r+s<2k+1;yo2=output matrix;
for i=1:length(x(1,:))-(2*k+1)
    for j=1:length(x(:,1))-(2*k+1)
        w=x(i:i+2*k,j:j+2*k);
        ws=sort(w(:));%sort(.) is a MATLAB function;
        wstr=ws(r+1:2*k+1-s);
        yo2(i,j)=sum(wstr)/(2*k+1-r-s);
    end;
end;
        

Fig 8.5.2 shows at the top the input signal to the filter. The middle figure shows the output of a mean filter with k=4 and the bottom figure shows the output of a trimmed-mean filter with r=2, s=2 and k=4.
To plot, for example, the two-dimensional signal x (a 64x64 matrix), we write the program: [X,Y]=meshgrid(1:64); surfl(X,Y,x); colormap gray;

(r,s)-Fold Winsorized Mean Filter


A modification of the (r,s)-fold trimmed mean filter is accomplished by substituting the values of the r smallest samples with the value , and the values of the s largest samples are replaced by , yielding

		
where N=2*k+1.


Book MATLAB Function for One-Dimensional (r,s)-Fold Winsorized Mean Filter:
[yo1]=ssp_1d_winsorized_mean_filter(x,r,s,k)

function[yo1]=ssp_1d_winsorized_mean_filter(x,r,s,k)
%x=input signal;r=integer;s=integer;r+s<N=2k+1=
%width of sliding window;
for n=1:length(x)-(2*k+1)
    for j=0:2*k
        y(j+1)=x(n+j);
    end;
    ys=sort(y);%sort(.) is a MATLAB function;
    ystr=ys(r+1:2*k+1-s);
    yo1(n)=(r*ys(r+1)+sum(ystr)+s*ys(2*k+1-s))/(2*k+1);
end;

 
Book MATLAB Function for Two-Dimensional (r,s)-Fold Winsorized Mean Filter:
[yo2]=ssp_2d_winsorized_mean_filter(x,r,s,k)

function[yo2]=ssp_2d_winsorized_mean_filter(x,r,s,k)
%x=input 2d signal (image)=matrix;r=integer;s=integer;
%r+s<(2k+1)(2k+1)=number of elements inside the 
%2d window;yo2=output matrix;
for i=1:length(x(1,:))-(2*k+1)
    for j=1:length(x(:,1))-(2*k+1)
        w=x(i:i+2*k,j:j+2*k);
        ws=sort(w(:));
        wstr=ws(r+1:2*k+1-s);
        yo2(i,j)=sum(wstr)/(2*k+1-s-r);
    end;
end;




-Trimmed Mean Filter and -Winsorized Mean Filter




	In both cases the trimmed elements are assumed to be equal number, r=s. The trimmed number is often specified by a proportion denoted by  is an integer. Hence, the number of samples trimmed at each side are . Since we have accepted N to be an odd number, we can select alpha to be even percentage such that   is an even integer. The  is given by

		


Book MATLAB Function for One-Dimensional  :
[yo1]=ssp_1d_alpha_trimmed_mean_filter(x,a,k)

function[yo1]=ssp_1d_alpha_trimmed_mean_filter(x,a,k)
%x=data;a=proportion of trimmed elements;N=2k+1=
%number of elements of the sliding window;
N=2*k+1;
for n=1:length(x)-N
    for j=0:2*k
        y(j+1)=x(n+j);
    end;
    ys=sort(y);
    ystr=ys(a*N+1:N-a*N);
    yo1(n)=sum(ystr)/(N-2*a*N);
end;


Book MATLAB Function for Two-Dimensional  :
[yo2]=ssp_2d_alpha_trimmed_mean_filter(x,a,k)


function[yo2]=ssp_2d_alpha_trimmed_mean_filter(x,a,k)
%x=data;a=portion of trimmed elemnts;NxN=(2k+1)(2k+1)=
%number of elements inside the sliding window;yo2=
%filter output (matrix);a*N*N=must be an integer;
N=2*k+1;
for i=1:length(x(1,:))-N
    for j=1:length(x(:,1))-N
        w=x(i:i+2*k,j:j+2*k);
        ws=sort(w(:));
        wstr=ws(a*N*N+1:N*N-a*N*N);
        yo2(i,j)=sum(wstr)/(N*N-2*a*N*N);
    end;
end;


Alpha Trimmed Winsorized Mean Filter
	The alpha-trimmed Winsorized mean filter is given by the relationship 

		

Book MATLAB Function for One-Dimensional Alpha-Trimmed Winsorized Mean Filter:
[yo1]=ssp_1d_alpha_trimmed_wins_mean_filter(x,a,k)

function[yo1]=ssp_1d_alpha_tr_wins_mean_filter(x,a,k)
%x=data;a=proportion of trimmed elements;N=k+1=number
%of elements inside the sliding window;a*N=must 
%be an integer;
N=2*k+1;
for n=1:length(x)-N
    for j=0:2*k
        y(j+1)=x(n+j);
    end;
    ys=sort(y);
    ystr=ys(a*N*N+1:N-a*N);
    yo1(n)=(sum(ystr)+a*N*ys(a*N+1)+a*N*ys(N-a*N))/N;
end;


Book MATLAB Function for Two-Dimensional Alpha-Trimmed Winsorized Mean Filter:
[yo2]=ssp_2d_alpha_trimmed_wins_mean_filter(x,a,k)

unction[yo2]=ssp_2d_alpha_tr_wins_mean_filter(x,a,k)
%x=data (matrix);a=portion of trimmed elements;
%NxN=(2k+1)(2k+1)=number of elements inside the
%sliding window;a*N*N=must be integer;
%yo2=output (matrix);
N=2*k+1;
for i=1:length(x(1,:))-N
    for j=1:length(x(:,1))-N
        w=x(i:i+2*k,j:j+2*k);
        ws=sort(w);
        wstr=ws(a*N*N+1:N*N-a*N*N);
        yo2(i,j)=sum(wstr)/(N*N-2*a*N*N);
    end;
end;

8.6  L-Filters
The L-estimators are useful and are widely used because, by varying the associated constants, we obtain many useful estimators.

Definition  8.6.1: The L-estimators are of the form

		
	The L-filters are also known as order statistic filters. They have been used by the statisticians for a long time since they have robust and often optimal properties for estimating population parameters of iid random variables. Furthermore, these filters are a compromise between nonlinear and linear operation since they include ordering and weighting. The L-filter is given by

		
If in addition, 

		
The L-filter is known as the smooth L-filter. The great advantage of these filters is the ability to choose appropriate weighting factors to optimize the filtering in the mean square sense.

Book MATLAB Function for One-Dimensional L-Filter:
[yo1]=ssp_1d_Lfilter(x,a,k)

 function[yo1]=ssp_1d_Lfilter(x,a,k)
%x=input vector data;a=input weighting vector,
%length(a)=N;N=2k+1=length of sliding window;
N=2*k+1;
for n=1:length(x)-N
    for j=0:2*k
        y(j+1)=x(j+n);
    end;
    ys=sort(y);
    yo1(n)=sum(ys.*a);
end;



 Book MATLAB Function for Two-Dimensional L-Filter:
[yo2]=ssp_2d_Lfilter(x,a,k)

function[yo2]=ssp_2d_Lfilter(x,a,k)
%x=input signal, matrix;a=input weighting matrix (NxN);
%NxN=(2k+1)(2k+1)=number of elements of the two-
%dimensional window;
N=2*k+1;
for i=1:length(x(1,:))-N
    for j=1:length(x(:,1))-N
        w=x(i:i+2*k,j:j+2*k);
        ws=sort(w(:));
        yo2(i,j)=sum(a(:)'.*ws');
    end;
end;

The two-dimensional output of Fig 8.6.1 was produced with a=hamming(13)*hamming(13)’; and k=4.

8.7 Ranked-Order Statistic Filter   
The rank-order filters have been used by statisticians for a long time and are simple modifications of the median filter. Mathematically, we write 

		

which is the rth order statistic of the sample . If r=k+1, we obtain x(k+1) which acts as a median filter. If r<k+1, a bias towards lower values is accomplished. If r>k+1 a bias towards higher values is accomplished.

Book MATLAB Function for One-Dimensional Ranked-Order Filter:
[yo1]=ssp_1d_ranked_order_filter(x,r,k)

function[yo1]=ssp_1d_ranked_order_filter(x,r,k)
%x=input data;r=integer<=N=2k+1;N=length
%of sliding window;
N=2*k+1;
for n=1:length(x)-N
    for j=0:2*k
        y(j+1)=x(n+j);
    end;
    yst=sort(y);
    yo1(n)=yst(r);
end;

Book MATLAB Function for Two-Dimensional Ranked-Order Filter:
[yo2]=ssp_2d_ranked_order_filter(x,r,k)


function[yo2]=ssp_2d_ranked_order_filter(x,r,k)
%x=input data (matrix);r=integer<NxN;
%NxN=number of elements inside the sliding 
%two-dimensional window; N=2k+1;
N=2*k+1;
for i=1:length(x(1,:))-N
    for j=1:length(x(:,1))-N
        w=x(i:i+2*k,j:j+2*k);
        ws=sort(w(:));
        yo2(i,j)=ws(r);
    end;
end;


Fig 8.7.1 shows the one-dimensional input signal {x(n)} and the output for r=2 and r=3 both with the same integer k=6. We note that a shift of the output takes place with different order statistic. Fig 8.7.2 shows the results of a two-dimensional filter with two different values of k.

8.8  Edge-Enhancement Filters
One type of edge-enhancement filters is the comparison and selection filter. Because the output of the median filter is smaller than the value of the output of the mean filter at the beginning of the signal edge, values of some smaller sample than the median is retained. Similarly, since the output of the median filter is larger than the output of the mean filter at the end of the signal edge, values of some larger sample than the median is retained. Formally we write

		

Book MATLAB Function for One-Dimensional Comparison Selection Filter:
[yo1]=ssp_1d_comp_select_filter(x,j,k)


function[yo1]=ssp_1d_comp_select_filter(x,j,k)
%x=data;N=2k+1=length of sliding window;
%j=integer; 1<=j<k
N=2*k+1;
for n=1:length(x)-N
    for m=0:2*k
        y(m+1)=x(n+m);
    end;
    ys=sort(y);
    ym=mean(y);%mean()=MATLAB function;
    ymed=median(y);%median()=MATLAB function;
    if ym>=ymed
        yo1(n)=ys(k+1-j);
    else
        yo1(n)=ys(k+1+j);
    end;
end;


Book MATLAB Function for Two-Dimensional Comparison Selection Filter:
[yo2]=ssp_2d_comp_select_filter(x,j,k)
function[yo2]=ssp_2d_comp_select_filter(x,m,k)
%x=data (matrix); NxN=(2k+1)(2k+1)=dimensions
%of two-dimensional sliding window;m=integer,
%1<=m<k;
N=2*k+1;
for i=1:length(x(1,:))-N
    for j=1:length(x(:,1))-N
        w=x(i:i+2*k,j:j+2*k);
        ws=sort(w(:));
        wm=mean(ws);
        wmed=median(ws);
        if wm>=wmed
            yo2(i,j)=ws(k+1-m);
        else
            yo2(i,j)=ws(k+1+m);
        end;
    end;
end;

Fig 8.8.1 shows the effect of increasing sharpness of the edge of a signal with the increase of the parameter j.

8.9 R-Filters
R-filters are the result of R-estimators which are robust and are based on rank tests. The rank of an observation xi is denoted by R(xi) and is given by

		
which means the rank of xi in the ordered sequence. Next, we assign the weights

		




to each of the n(n+1)/2 averages . Then, the R-estimator is the median of the discrete distribution that assigns the probability wjk to each average . For example, if , then the distribution assigns the weights 2/(N(N+1)) to each of the averages  and, thus, 

		
known as the Hodges-Lehmann estimator.
 
Example 8.9.1 Let the input data be the vector x=[4 5 16 9 6]. Then we sort the vector to obtain {x}=[4 5 6 9 16]. The output of the Hodges-Lehmann estimator is med{(4+16)/2,(5+9)/2,(6+6)/2}=med{10,7,6}=7.
												      ▄
Book MATLAB One-Dimensional Hodges-Lehmann Filter
[yo1]=ssp_1d_hodges_lehmann_filter(x,k)

function[yo1]=ssp_1d_hodges_lehmann_filter(x,k)
%x=data;N=2k+1=length of sliding window;
N=2*k+1;
for n=1:length(x)-N
    for m=0:2*k
        y(m+1)=x(n+m);
    end;
    ys=sort(y);
    for i=1:k+1
        aws(i)=(ys(i)+ys(N-i+1))/2;
    end;
    yo1(n)=median(aws);
end;


Book MATLAB Two-Dimensional Hodges-Lehmann Filter
[yo2]=ssp_2d_hodges_lehmann_filter(x,k)

function[yo2]=ssp_2d_hodges_lehmann_filter(x,k)
%x=data matrix;NxN=(2k+1)(2k+1)=dimensions of
%two dimensions sliding window;
N=2*k+1;
for n=1:length(x(1,:))-N
    for m=1:length(x(:,1))-N
        for m=1:length(x(:,1))-N
            w=x(n:n+2*k,m:m+2*k);
            ws=sort(w(:));
            for i=1:k+1
                aws(i)=(ws(i)+ws(N-i+1))/2;
            end;
            yo2(n,m)=median(aws);
        end;
    end;
end;

Fig 8.9.1 shows the result of the Hodges-Lehmann on a noisy two-dimensional signal with k=2 and k=4.



                                                                                                                                   										
















PROBLEMS-SOLUTIONS-HINTS
SUGGESTIONS

8.2.1 Verify 
[Solution:



8.2.2 Let v(n) be white Gaussian noise with zero mean and equal variance. If the observation is x(n)=c+v(n) for , find the estimate of the parameter c.
[Solution:

 
for all c. This implies that the estimator (1) is unbiased]



8.2.3 Show that , with  (see also Prob 8.2.2) is a biased estimator.
[Solution:





 which indicates that if c=0 then  and if  then   and, thus,  is an unbiased estimator]

8.2.4 Verify .
[Solution: Taking the partial derivative of  with respect to am, we find:

 (1) since aman appears twice in the double summation expansion. Therefore, (1) is the mth equation of .]





8.2.5 Let  for , where v(n)’s are iid with zero mean and variance  for . Find the a’s in  .
[Solution:






	


8.2.6 Let the rv’s  denote a random sample, are iid and the pdf is

	
Find the maximum likelihood function of θ.
[Solution:

The likelihood function is .







we set N=3, x(0)=0, x(1)=1, x(2)=1 then  and ]


8.2.7 A set of data is given by 


with zero mean and known variance . Show that the estimator   is an efficient estimator.


[Solution: The pdf is  (1). The derivative of the logarithm of the likelihood function is:   which yields the estimator


. From (2) we also obtain  which shows that the second derivative is a constant. From (2) we also obtain the mean value to be




 which shows that the estimator is unbiased. Since the Cramer-Rao formula gives the relation  indicates that the variance of the estimator is:  which attains the lowest value, known as the Crame-Rao lower bound, as . Hence the estimator is asymptotically efficient. ]



8.2.8 Let arrange a set of rv’s  in assenting order of their values . The population of this set has a Laplacian pdf. Find the estimator.






[Solution: Referring to Fig P8.2.8 the sum  becomes minimum in the range  and remains constant in this range. The sum  becomes minimum in the range  and stays constant. The last factor of the summation  and this factor becomes minimum if , where x(2) is the median of the set.] 

8.3.1 Show that the mean filter is linear.


[Solution: The linearity is defined by , where a and b are real or complex constants. From the definition we obtain  


(filtered noise)]

8.4.1 Find the output of a median filter if the input sequence is x={1 9 4 3 8 7 7}, and k=1.
[Solution: N=2*1+1=3, yo1={med {1 9 4}  med{9 4 3}  med{4 3 8} med{3 8 7}={4 4 4 7}]

8.5.1 Find the output of a trimmed-mean filter if the input is x={2 6 1 5 7 9 8} and r=1, s=1 and k=2. 

[Solution: xs={1 2 5 6 8 9}, ]

8.5.2 Find the output of a (r,s)-fold Winsorized mean filter if the input is x={2 6 1 5 7 9 8} and r=1, s=1 and k=2.

[Solution: xs={1 2 5 6 7 8 9}, yo1(1)=]

8.5.3 Find the output of an α-trimmed mean filter if the input is x={2 6 1 5 7 9 8} and α=0.2, k=2.


[Solution: xs={1 2 5 6 7 8 9}, . Hence, =4.33, yo1(2)=(5+6+7)/3=6, yo1(3)=7]

8.6.1 Find the output of an L-filter if x={2 1 6 4 5 9 8 7 3}, a=[0.4 0.2 0.4] and k=1.

[Solution:  yo1(3)=5.0, yo1(4)=6.2, yo1(5)=7.2, yo1(6)=8.0]
 
8.7.1 Find the output of a ranked-order filter with r=2 and k=2. The input data are x={5 1 3 9 8 7 6  2 4}.
[Solution: N=5, yo1s(1)={1 3 5 8 9}, yo1(1)=x(2)=3, yo1(2)={1 3 6 7 8 9}, yo1(2)=x(2)=3, yo1s(3)={2 6 7 8 9}, yo1(3)=x(2)=6, etc]

34

image3.wmf
011

[]

N

sss

-

=

s

L


image44.wmf
2

and(())()

N

Igxc

q

s

=-=-

x


oleObject52.bin

image45.wmf
{(0),(1),,(1)}

xxxN

-

L


oleObject53.bin

image46.wmf
011

,,,

N

aaa

-

L


oleObject54.bin

image47.wmf
22

011

ˆˆ

(){()}{[(0)(1)(1)]}

N

mseEEaxaxaxN

qqq

-

=-=++-

L


oleObject55.bin

image48.wmf
111

2

000

(){}2{()}{()()}

NNN

imn

nmn

mseEaExnaaExmxn

qqq

---

===

=-+

ååå


oleObject56.bin

oleObject3.bin

image49.wmf
000011011

100111111

1,001,111,11

(,(0))(0)

(,(1))(1)

(,(1))(1)

NNx

NNx

NNNNNx

rarararxr

rarararxr

rarararxNrN

q

q

q

q

q

q

--

--

-----

+++=

+++=

+++=--

L@

L@

M

L@


oleObject57.bin

image50.wmf
x

q

=

Rar


oleObject58.bin

image51.wmf
{()()}

mn

rExmxn

=


oleObject59.bin

image52.wmf
(){()}

x

rmExm

q

q

=


oleObject60.bin

image53.wmf
222

22

ˆˆˆˆˆˆˆ

(){[({})({})]}{[({}]}{[{}]}

ˆˆˆˆˆˆ

2{[{}][{}]}var()[{}]var()()

mseEEEEEEE

EEEEb

qqqqqqqqq

qqqqqqqqq

=-+-=-+-

+--=+-=+


oleObject61.bin

image4.wmf
,where

iii

svs


image54.wmf
ˆ

((0),(1),,(1))

gxxxN

q

=-

L


oleObject62.bin

image55.wmf
ˆ

((0),(1),,(1))

gxxxN

q

=-

L


oleObject63.bin

image56.wmf
[(0)(1)(1)]

T

xxxN

=-

x

L


oleObject64.bin

image57.wmf
((0),(1),,(1);),

pxxxN

-ÎQ

L

qq


oleObject65.bin

image58.wmf
(;(0),(1),,(1))((0),(1),,(1);)

lxxxNpxxxN

qq

-=-

LL


oleObject66.bin

oleObject4.bin

image59.wmf
011

[]

T

N

qqq

-

L

q=


oleObject67.bin

image60.wmf
1

0

(;(0),(1),,(1))(();

N

n

LxxxNpxn

-

=

-=

Õ

L

qq)


oleObject68.bin

image61.wmf
(

)

(,1),meanofthepopulation

N

qqqm

-¥<<¥=

@


oleObject69.bin

image62.wmf
1

2

0

1

(;(0),(1),,(1))exp(())/2

2

N

N

n

LxxxNxn

qq

p

-

=

æö

æö

-=--

ç÷

ç÷

èø

èø

å

L


oleObject70.bin

image63.wmf
1

2

0

1

0

ln{(;(0),(1),,(1))}

ln{1/2}(())/2

(())0

N

n

N

n

LxxxN

Nxn

xn

q

pq

qq

q

-

=

-

=

¶-¶

æö

=--

ç÷

¶¶

èø

=--=

å

å

L


oleObject71.bin

image5.wmf
i

v


image64.wmf
1

0

1

ˆ

((0),(1),,(1))()

N

n

gxxxNxn

N

q

-

=

=-=

å

L


oleObject72.bin

image65.wmf
qm

@


oleObject73.bin

image66.wmf
1

0

1

ˆ

{}{()}

N

n

N

EExn

NN

q

qq

-

=

===

å


oleObject74.bin

image67.wmf
()((0),(1),,(1))

ggxxxN

=-

x

L


oleObject75.bin

image68.wmf
ÎQ


oleObject76.bin

oleObject5.bin

image69.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

ˆ

; 0, 1, , 1=sup ; 0, 1, , 1

LxxxNLxxxN

ÎQ

¼-¼-

q

qq


oleObject77.bin

image70.wmf
ˆ

{}unbiasedestimator

E

qq

=


oleObject78.bin

image71.wmf
ˆ

limPr{}0

N

qqe

®¥

->=


oleObject79.bin

image72.wmf
N

®¥


oleObject80.bin

image73.wmf
ˆ

qq

®


oleObject81.bin

image6.wmf
x=s+v


image74.wmf
ˆ

q


oleObject82.bin

oleObject83.bin

image75.wmf
ˆ

{}

E

qq

®


oleObject84.bin

oleObject85.bin

oleObject86.bin

image76.wmf
ˆ

var{}lowestvalueforall

qq

®


oleObject87.bin

oleObject88.bin

oleObject6.bin

image77.wmf
()()0,1,,1

xncvnnN

=+=-

L


oleObject89.bin

image78.wmf
1

2

/2

0

11

(;)exp(())

(2)2

N

N

n

pcxnc

cc

p

-

=

éù

=--

êú

ëû

å

x


oleObject90.bin

image79.wmf
/2

1

2

0

11

2

2

00

ln[(2)(;)]1

ln(())

22

111

(())(())0

22

N

N

n

NN

nn

pcN

cxnc

ccc

N

xncxnc

ccc

p

-

=

--

==

¶¶

éù

=---

êú

¶¶

ëû

=-+-+-=

å

åå

x


oleObject91.bin

image80.wmf
1

22

0

1

ˆˆ

()0

N

n

ccxn

N

=

=

+-=

å


oleObject92.bin

image81.wmf
ˆ

c


oleObject93.bin

image7.wmf
x=sv


image82.wmf
1

2

0

111

ˆ

()

24

N

n

cxn

N

-

=

=-++

å


oleObject94.bin

oleObject95.bin

image83.wmf
11

22

00

111111

ˆ

{}()()

2424

NN

nn

EcExnExn

NN

--

==

ìü

ìü

ïï

=-++¹-++

íýíý

îþ

ïï

îþ

åå


oleObject96.bin

image84.wmf
N

®¥


oleObject97.bin

image85.wmf
(

)

1

2222

0

2

2222

1

(){()}var(){}

{(}var(){}2{}{})

N

n

xnExnxExcc

N

ExxxExExxxExx

-

=

®=+=+

-=-+=-

å

@


oleObject98.bin

image86.wmf
2

222

1111

ˆ

2444

cccorcccc

æöæö

+=++++=++

ç÷ç÷

èøèø


oleObject7.bin

oleObject99.bin

image87.wmf
ˆ

cc

®


oleObject100.bin

image88.wmf
2

s


oleObject101.bin

image89.wmf
2

(;,)

pm

s

x


oleObject102.bin

image90.wmf
2

221/2

1

(;,)(2)exp

2

xm

pxm

sps

s

-

éù

-

æö

=-

êú

ç÷

èø

êú

ëû


oleObject103.bin

image91.wmf
2

22

11

ln(;,)ln(2)

22

xm

pxm

sps

s

-

æö

=--

ç÷

èø


image8.wmf
011001111

[][]

NNN

xxxsvsvsv

---

=

LL


oleObject104.bin

image92.wmf
2222

(,)((0);,)((1);,)((1);,)

LmpxmpxmpxNm

ssss

=-

L


oleObject105.bin

image93.wmf
1

22

0

ln(,)ln(();,)

N

n

Lmpxnm

ss

-

=

=

å


oleObject106.bin

image94.wmf
2

1

22

0

1

22

2

0

11()

ln(,)ln(2)

22

1

ln(2)(())

22

N

n

N

n

xnm

Lm

N

xnm

sps

s

ps

s

-

=

-

=

éù

-

æö

=--

êú

ç÷

èø

êú

ëû

=---

å

å


oleObject107.bin

image95.wmf
11

2

2224

00

ln1ln11

(());(())

()22

NN

nn

LLN

xnmxnm

m

ssss

--

==

¶¶

=-=-+-

¶¶

åå


oleObject108.bin

image96.wmf
1

2

0

1

ˆ

(())0

ˆ

N

n

xnm

s

-

=

-=

å


oleObject8.bin

oleObject109.bin

image97.wmf
1

2

24

0

11

ˆ

(())0

ˆˆ

22

N

n

N

xnm

ss

-

=

-+-=

å


oleObject110.bin

image98.wmf
11

00

1

ˆˆ

(())0()samplemean

NN

nn

xnmormxn

N

--

==

-===

åå


oleObject111.bin

image99.wmf
4

ˆ

2

s


oleObject112.bin

image100.wmf
11

2222

00

1

ˆˆˆˆ

(())0or(())

NN

nn

Nxnmxnm

N

ss

--

==

-+-==-

åå


oleObject113.bin

image101.wmf
(;)exp()

2

a

pxax

qq

=--


image9.wmf
q


oleObject114.bin

image102.wmf
1

1

0

0

()lnexp(())()ln{}ln{2}

2

N

N

N

n

n

a

LaxnaxnNaN

qqq

-

-

=

=

ìü

ïï

æö

=--=--+-

íý

ç÷

èø

ïï

îþ

å

Õ


oleObject115.bin

image103.wmf
1

()

2

xmed

Fx

=


oleObject116.bin

image104.wmf
1

0

()

N

n

xn

q

-

=

--

å


oleObject117.bin

image105.wmf
1/2

()[(())(())]

xnxnxn

qqq

-=--


oleObject118.bin

image106.wmf
ˆ

med{(0)(1)(1)}

xxxN

q

=-

L


oleObject9.bin

oleObject119.bin

image107.wmf
()

L

q


oleObject120.bin

image108.wmf
()

L

q


oleObject121.bin

image109.wmf
1

2

0

(())

N

n

xn

q

-

=

-

å


oleObject122.bin

image110.wmf
1

0

1

ˆ

()

N

n

xn

N

q

-

=

=

å


oleObject123.bin

oleObject124.bin

oleObject10.bin

image111.wmf
1

0

()

N

n

xn

q

-

=

-

å


oleObject125.bin

oleObject126.bin

image112.wmf
()()()0,1,,1

xnsnvnnN

=+=-

L


oleObject127.bin

image113.wmf
1

()()

21

k

jk

ynxnj

k

=-

=+

+

å


oleObject128.bin

image114.wmf
(),(1),,(),,(1),()

xnkxnkxnxnkxnk

--++-+

LL


oleObject129.bin

image115.wmf
2

2

1

()()3,4,,48

5

j

ynxnjn

=-

=+=

å

L


image10.wmf
ˆ

((0),(1),,(1))

gxxxN

q

=-

L


oleObject130.bin

image116.wmf
77

´


oleObject131.bin

image117.wmf
(1)(2)()

,,,

r

xxx

L


oleObject132.bin

image118.wmf
(1)(2)()

,,,

NsNsN

xxx

-+-+

L


oleObject133.bin

image119.wmf
(1)(2)()

,,

r

xxx

£££

L


oleObject134.bin

image120.wmf
()

1

1

trim-mean{(1),(2),,();,}

Ns

i

ir

xxxNrsx

Nrs

-

=+

=

--

å

L


oleObject11.bin

oleObject135.bin

image121.wmf
(1)

r

x

+


oleObject136.bin

image122.wmf
()

Ns

x

-


oleObject137.bin

image123.wmf
(1)()()

1

1

winsorized_mean{(1),,();,}

Ns

riNs

ir

xxNrsrxxsx

N

-

+-

=+

æö

=++

ç÷

èø

å

L


oleObject138.bin

image124.wmf
a


oleObject139.bin

image125.wmf
a


oleObject12.bin

oleObject140.bin

image126.wmf
/,0/2

jNjN

a

=££


oleObject141.bin

image127.wmf
N

a


oleObject142.bin

oleObject143.bin

image128.wmf
a

-

trimmedmeanfilter


oleObject144.bin

image129.wmf
()

1

1

Alpha-Tr-Mean-Filter{(1),,();}

2

NN

i

iN

xxNx

NN

a

a

a

a

-

=+

=

-

å

L


oleObject145.bin

image11.wmf
((0),(1),,(1);)

pxxxN

q

-

L


image130.wmf
a

-

TrimmedMeanFilter


oleObject146.bin

oleObject147.bin

image131.wmf
(1)

()()

1

1

{(1),(2),,();}(

Alpha-Tr-Wins-Mean-Filter

N

NaN

iNN

iN

xxxNNx

N

xNx

a

a

a

aa

a

+

-

-

=+

=

++

å

L


oleObject148.bin

image132.wmf
()

1

ˆ

L-estimator'constants

N

iii

i

axas

q

=

==

å


oleObject149.bin

image133.wmf
()12

1

{(1),(2),,();}[]

N

T

iiN

i

LFilterxxxNaxaaa

=

-==

å

aa

LL


oleObject150.bin

image134.wmf
1

1

N

i

i

a

=

=

å


oleObject13.bin

oleObject151.bin

image135.wmf
()

Rank-Order{(1),(2),,();}

r

xxxNrx

=

L


oleObject152.bin

image136.wmf
{(1),(2),,()}

xxxN

L


oleObject153.bin

image137.wmf
{

(1)

Comp-Select{(1),(2),,();},mean{(1),,()}{

(1),,()}

kj

xxxNjxxxNmedxxN

+-

=³

LLL


oleObject154.bin

image138.wmf
(())

1,2,,

i

iRx

xxiN

==

L


oleObject155.bin

image139.wmf
1

1

Nk

jk

N

i

i

d

w

id

-+

=

=

å


oleObject14.bin

oleObject156.bin

image140.wmf
()()

()/2for

jk

xxjk

+£


oleObject157.bin

oleObject158.bin

image141.wmf
12

1

N

ddd

====

L


oleObject159.bin

oleObject160.bin

image142.wmf
1()()

ˆ

Hodges-Lehmann{,,}med{()/2:1}

Njk

xxxxjkN

q

=+£££

L@


oleObject161.bin

image143.wmf
2

11

2

00

22

1111

22

0000

0

11

ˆˆˆ

var{}var(){[{}]}()

1111

()2()()2()

1

()

NN

nn

NNNN

nnnn

N

n

cxnEcEcExnc

NN

ExnccxnExnccExn

NNNN

Exn

N

--

==

----

====

=

ìü

ìüéù

ïï

==-=-

íýíý

êú

îþëû

ïï

îþ

ìüìü

æöæöìü

ïïïï

=+-=+-

íýíýíý

ç÷ç÷

èøèøîþ

ïïïï

îþîþ

=

åå

åååå

2

111

2

00

111

22222

22

000

22

1

2

22

0

11

(since(){()})

1111

()()(){()}

1

var{()};(),()arein

NN

nn

NNN

nnmnn

N

n

Nc

cExnExnc

NNN

ExnxnxmcExncc

NNNN

NcN

xncxnxm

NNNN

ss

---

==

---

=¹==

-

=

ìü

æöìü

ïï

-===

íýíý

ç÷

èøîþ

ïï

îþ

ìü

=+-=+-

íý

îþ

=+-==

ååå

åååå

å

dependent]


image12.wmf
qm

=


oleObject162.bin

image144.wmf
0,1,,1

nN

=-

L


oleObject163.bin

image145.wmf
1

0

111

000

1

ˆ

()((0),(1),,(1))(1),

111

ˆ

{}{()}{()}({()})

N

n

NNN

nnn

IfwesetcxngxxxNthen

N

Nc

EcExnEcvncEvnc

NNNN

-

=

---

===

==-

==+=+==

å

ååå

L


oleObject164.bin

image146.wmf
1

0

1

ˆ

()

4

N

n

cxn

N

-

=

=

å


oleObject165.bin

image147.wmf
()()

xncvn

=+


oleObject166.bin

image148.wmf
11

ˆ

{}{()}

44

EcExnc

N

==

å


oleObject15.bin

oleObject167.bin

image149.wmf
ˆ

{}

Ecc

=


oleObject168.bin

image150.wmf
0

c

¹


oleObject169.bin

image151.wmf
ˆ

{}

Ecc

¹


oleObject170.bin

image152.wmf
ˆ

c


oleObject171.bin

image153.wmf
111

000

ˆ

()/2{()}{()()}2()20

NNN

mmnxnmn

mnn

m

mseaExmaaExmxnrmar

a

q

qq

---

===

¶

éù

¶¶=-+=-+=

êú

¶

ëû

ååå


image13.wmf
2

2

1

((0))

2

2

1

((0);)

2

x

pxe

q

s

q

ps

--

=


oleObject172.bin

image154.wmf
()()()

xnsnvn

=+


oleObject173.bin

image155.wmf
0,1,,1

nN

=-

L


oleObject174.bin

image156.wmf
2

n

s


oleObject175.bin

oleObject176.bin

image157.wmf
{()()}{(()())(()())}{(()()}{()()}{()()}

mn

rExmxnEsmvmsnvnEsmsnEvmsnEsmvn

==++=++


oleObject177.bin

oleObject16.bin

image158.wmf
222

{()()}(1).f(2)andif(3).Also(){()()

mnsmmsvsx

EvmvnImnrmnrrmEsmsm

sss

+¹===+=


oleObject178.bin

image159.wmf
22

()(){()()}(4).Hencewhere

ssx

smvmEsmvmRar

q

ss

+=+==


oleObject179.bin

image160.wmf
222

2

0

2

0

222

2

1

1

2

1

2

222

1

00

00

;]

00

sss

s

sss

N

s

N

sss

a

a

sss

s

s

sss

s

s

s

sss

-

-

-

éù

éù

éù

éù

êú

êú

êú

êú

êú

êú

=+=

êú

êú

êú

êú

êú

êú

êú

êú

ëû

ëû

êú

êú

ëû

ëû

RaR

L

L

L

L

@MM

M

M

L

L


oleObject180.bin

image161.wmf
(0),(1),,(1)

xxxN

-

L


oleObject181.bin

image162.wmf
()1()

(())(1)()0,101

0elsewhere

xmxm

pxmxm

qqq

-

=-=££

=


oleObject182.bin

image14.wmf
((0);)

px

q


image163.wmf
()()

(;(0),(1))(1)(1),where()are0or1for0,1,,1

xmNxm

LxxNxmmN

qqq

-

åå

-=-£=-

LL


oleObject183.bin

image164.wmf
11

00

Thenaturallogarithmof(1)isln()()ln()ln(1

).,

NN

mm

LxmNxmHence

qqq

--

==

=+-+-

åå


oleObject184.bin

image165.wmf
11

ln()/()(1/)(())/(1)0(2),providedthatisno

tzeroor

NN

mm

LxmNxm

qqqqq

--

¶¶=---=

åå


oleObject185.bin

image166.wmf
1

0

ˆ

orone.Solving(2)forweobtainthemaximumlik

elihoodestimator()/,If

N

m

xmN

qq

-

=

=

å


oleObject186.bin

image167.wmf
2322

()(1)(1)

L

qqqqq

-

=-=-


oleObject187.bin

oleObject17.bin

image168.wmf
ˆ

2/3

q

=


oleObject188.bin

image169.wmf
()()for0,1,,1,where()isa

xncvnnNvnWGN

=+=-

L


oleObject189.bin

image170.wmf
2

s


oleObject190.bin

image171.wmf
ˆ

c


oleObject191.bin

image172.wmf
1

2/22

2

0

1

(;)((0);)((1);)((1);)[1/(2)]exp(())

2

N

N

n

pcpxcpxcpxNcxnc

ps

s

-

=

éù

=-=--

êú

ëû

å

x

L


oleObject192.bin

image15.wmf
q


image173.wmf
1

2

0

1

ln(;)/(())0(2)

N

n

pccxnc

s

-

=

¶¶=-=

å

x


oleObject193.bin

image174.wmf
11

22

00

111

ˆˆ

()()(3)

NN

nn

xnNcorcxn

N

ss

--

==

==

åå


oleObject194.bin

image175.wmf
2

22

ln(;)

pcN

c

s

¶

=-

¶

x


oleObject195.bin

image176.wmf
1

0

1

ˆ

{}{()}(1/)

N

n

EcExnNNcc

N

-

=

===

å


oleObject196.bin

image177.wmf
222

1/{ln(;)/}/

EpxccN

s

-¶¶=


oleObject197.bin

oleObject18.bin

image178.wmf
2

ˆ

var()/

cN

s

=


oleObject198.bin

image179.wmf
N

®¥


oleObject199.bin

image180.wmf
{(0)(1)(2)(3)(4)}

xxxxx


oleObject200.bin

image181.wmf
(0)(1)(2)(3)(4)

{}

xxxxx


oleObject201.bin

image182.wmf
(0)(4)

xx

qq

-+-


oleObject202.bin

image16.wmf
23

or

qqq

=


image183.wmf
(1)(4)

xx

q

££


oleObject203.bin

image184.wmf
(1)(3)

xx

qq

-+-


oleObject204.bin

image185.wmf
(2)(4)

xx

q

££


oleObject205.bin

image186.wmf
41

(2)

0

()is

n

xnx

qq

-

=

--

å


oleObject206.bin

image187.wmf
(2)

x

q

=


oleObject207.bin

oleObject19.bin

image188.wmf
()()()

faxbyafxbfy

+=+


oleObject208.bin

image189.wmf
1

()()

21

k

jk

ynxnj

k

=-

=+=

+

å


oleObject209.bin

image190.wmf
111

[()()]()()(filteredsignal)

212121

kkk

jkjkjk

snjvnjsnjvnj

kkk

=-=-=-

+++=+++=+

+++

ååå


oleObject210.bin

image191.wmf
256567678

1,,{4.367}

51133

yo

++++++

ìü

==

íý

--

îþ


oleObject211.bin

image192.wmf
(12(256)16)/54.2,yo1(2)6

´++++´==


oleObject212.bin

image17.wmf
1

qq

=


image193.wmf
2215,1

NN

a

=´+==


oleObject213.bin

image194.wmf
1(1)(256)/(520.25)

yo

=++-´´


oleObject214.bin

image195.wmf
1(1)10.420.260.43.2,1(2)10.440.260.43.6,

yoyo

=´+´+´==´+´+´=


oleObject215.bin

oleObject20.bin

image18.wmf
q


oleObject21.bin

oleObject22.bin

oleObject23.bin

image19.wmf
{(0),(1),,(1)}

xxxN

-

L


oleObject24.bin

image20.wmf
()()

xncvn

=+


oleObject25.bin

image21.wmf
1

0

1

ˆ

()

N

n

cxn

N

-

=

=

å


oleObject26.bin

image22.wmf
(0)

cx

=

%


oleObject27.bin

image23.wmf
11

00

11

ˆ

{}{()}{()}

1

{(0)(1)(1)}

NN

nn

EcExnExn

NN

N

ExxxN

NN

m

m

--

==

==

=+++-==

åå

L


oleObject28.bin

image24.wmf
{}{(0)}

EcEx

m

==

%


oleObject29.bin

image25.wmf
2

1

0

1

ˆ

var{}var{()}

N

n

cxn

NN

s

-

=

==

å


image1.wmf
01,11

mMnN

££-££-


oleObject30.bin

image26.wmf
2

var{}var{(0)}

cx

s

==

%


oleObject31.bin

image27.wmf
ˆ

var{}var{}

cc

>

%


oleObject32.bin

image28.wmf
ˆ

var{}

c


oleObject33.bin

image29.wmf
N

®¥


oleObject34.bin

image30.wmf
ˆ

{}

Eab

qqq

=<<


oleObject1.bin

oleObject35.bin

image31.wmf
q


oleObject36.bin

image32.wmf
ˆ

{}()

Eb

qqq

=+


oleObject37.bin

image33.wmf
ˆ

(){}

bE

qqq

=-


oleObject38.bin

image34.wmf
(;)

p

q

x


oleObject39.bin

image35.wmf
ln(;)

0forall

p

E

q

q

q

¶

ìü

=

íý

¶

îþ

x


image2.wmf
011

[]

N

N

xxx

-

=

x

L


oleObject40.bin

oleObject41.bin

image36.wmf
ˆ

q


oleObject42.bin

image37.wmf
22

22

2

2

1ln(;)ln(;)

ˆ

var{};(;)

ln(;)

pp

Epd

p

E

qq

qq

qq

q

q

ìü

¶¶

³=

íý

¶¶

ìü

¶

îþ

-

íý

¶

îþ

ò

xx

xx

x


oleObject43.bin

oleObject44.bin

image38.wmf
ln(;)

()(())

p

Ig

q

qq

q

¶

=-

¶

x

x


oleObject45.bin

oleObject46.bin

oleObject2.bin

image39.wmf
()()0,1,,1

xncvnnN

=+=-

L


oleObject47.bin

image40.wmf
1

2

21/22

0

1

2

2/22

0

11

(;)exp((()))

(2)2

11

exp(())

(2)2

N

n

N

N

n

pcxnc

xnc

pss

pss

-

=

-

=

=--

æö

=--

ç÷

èø

Õ

å

x


oleObject48.bin

image41.wmf
1

2/22

2

0

1

22

0

ln(;)1

ln[(2)(())

2

1

(())();samplemean

N

N

n

N

n

px

xnc

cc

N

xncxcx

q

ps

s

ss

-

=

-

=

¶¶

æö

=---

ç÷

¶¶

èø

=-=-=

å

å


oleObject49.bin

image42.wmf
2

22

ln(;)

pN

c

q

s

¶

=-

¶

x


oleObject50.bin

image43.wmf
2

2

1

ˆ

var()

/

c

NN

s

s

³=


oleObject51.bin

