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Section 5.1 H2 PID Controllers for the First-Order Plant

5.1 H2 PID Controllers for the First-Order Plant

An analog of H∞ optimal control theory: H2 optimal control
theory

Assume that the plant is

G (s) =
Ke−θs

τs + 1

Using the Youla parameterization, we have

C (s) =
Q(s)

1− G (s)Q(s)

where Q(s) is a stable transfer function. It is difficult to treat
e−θs analytically. Approximate it by the 1/1 Pade approximant:

G (s) ≈ K
1− θs/2

(τs + 1)(1 + θs/2)
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Section 5.1 H2 PID Controllers for the First-Order Plant

The design procedure for the H2 PID controller is similar to that
for the H∞ PID controller. The controller is first designed for the
approximate plant and then used to control the original plant

The H2 optimal index is

min ‖W (s)S(s)‖2
where W (s) is the weighting function. Assume that the system

input is a unit step. In view of the discussion in Section 3.2, the
weighting function in H2 optimal control should be chosen so that
the input is normalized to an impulse, that is, ‖d(s)/W (s)‖2 = 1.
Then, W (s) = 1/s.
W (s) has a pole on the imaginary axis. To guarantee a finite
2-norm and to have the asymptotic property, a constraint has to
be imposed on the design:

lim
s→0

S(s) = lim
s→0

[1− G (s)Q(s)] = 0
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Section 5.1 H2 PID Controllers for the First-Order Plant

In other words, S(s) must have a zero at the origin to cancel the
pole of W (s). This gives

Q(0) =
1

G (0)
=

1

K

It should be emphasized that the constraint is also required for
asymptotic tracking. The set of all Q(s)s satisfying the constraint
can be written as

Q(s) =
1

K
+ sQ1(s)

where Q1(s) is stable. The function to be minimized is

‖W (s)S(s)‖22

=

∥∥∥∥W (s)

{
1− G (s)

[
1

K
+ sQ1(s)

]}∥∥∥∥2
2

=

∥∥∥∥ θτs/2 + (θ + τ)

(τs + 1)(θs/2 + 1)
− K (1− θs/2)

(τs + 1)(1 + θs/2)
Q1(s)

∥∥∥∥2
2
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=

∥∥∥∥1− θs/2

1 + θs/2

[
θτs/2 + (θ + τ)

(τs + 1)(1− θs/2)
− K

τs + 1
Q1(s)

]∥∥∥∥2
2

(1− θs/2)/(1 + θs/2) in the equation is an all-pass transfer
function. With the definition of 2-norm, it is easy to verify that the
2-norm of a transfer function keeps its value after introducing an
all-pass transfer function to it. Therefore,

‖W (s)S(s)‖22 =

∥∥∥∥ θτs/2 + (θ + τ)

(τs + 1)(1− θs/2)
− K

τs + 1
Q1(s)

∥∥∥∥2
2

As we known, by partial fraction expansion a strictly proper
transfer function without poles on the imaginary axis can always be
uniquely expressed as a stable part (which does not have poles in
Re s > 0) and an unstable part (which does not have poles in Re
s < 0):

Zhang, W.D., CRC Press, 2011 (No.1 SJTU) Version 1.0 6/78



Section 5.1 H2 PID Controllers for the First-Order Plant

θτs/2 + (θ + τ)

(τs + 1)(1− θs/2)
=

θ

1− θs/2
+

τ

τs + 1

Then

‖W (s)S(s)‖22 =

∥∥∥∥ θ

1− θs/2

∥∥∥∥2
2

+

∥∥∥∥ τ

τs + 1
− K

τs + 1
Q1(s)

∥∥∥∥2
2

Temporarily relax the requirement on the properness of Q(s). To
obtain the minimum, the only choice is

Q1opt(s) =
τ

K

Consequently, the optimal Q(s) is

Qopt(s) =
τs + 1

K
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Section 5.1 H2 PID Controllers for the First-Order Plant

Q(s) should be proper. Use the following filter to roll the improper
solution off:

J(s) =
1

λs + 1

where λ is the performance degree. It is a positive real number.
The suboptimal Q(s) is

Q(s) = Qopt(s)J(s) =
τs + 1

K (λs + 1)

Since Q(0) = 1/K , Q(s) satisfies the constraint for asymptotic
tracking. The unity feedback loop controller is

C (s) =
Q(s)

1− G (s)Q(s)
=

1

K

(τs + 1)(1 + θs/2)

θλs2/2 + (λ+ θ)s
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Comparing the controller with

C = KC

(
1 +

1

TI s
+ TDs

)
1

TF s + 1

gives that

TF =
θλ

2(λ+ θ)
,TI = τ +

θ

2
,TD =

θτ

2TI
,KC =

TI

K (λ+ θ)

If the following form is chosen:

C (s) = KC

(
1 +

1

TI s
+

TDs

TF s + 1

)
the parameters of the PID controller are

TF =
θλ

2(λ+ θ)
,TI = τ+

θ

2
−TF ,TD =

θτ

2TI
−TF ,KC =

TI

K (λ+ θ)
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Section 5.1 H2 PID Controllers for the First-Order Plant

When the PID controller is in the form of

C (s) = KC

(
1 +

1

TI s

)
TDs + 1

TF s + 1

parameters are

TF =
θλ

2(λ+ θ)
,TI = τ(or

θ

2
),TD =

θ

2
(or τ),KC =

TI

K (λ+ θ)

The optimal performance, approximately, is

min ‖W (s)S(s)‖2 =

∥∥∥∥ θ

1− θs/2

∥∥∥∥
2

=
√
θ
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Section 5.2 Quantitative Tuning of H2 PID Controllers

5.2 Quantitative Tuning of H2 PID Controllers

Nominal stability: The larger the time delay, the more difficult to
stabilize the closed-loop system

As long as the performance degree is greater than a lower bound,
the closed-loop system is stable

Nominal performance: The existence of time delays adversely
affects the performance of the closed-loop system. The
performance is worse and worse with the increase of the time delay

The performance degree of the H2 PID controller has a similar
function to that of the H∞ PID controller:

When there is no modeling error, the performance degree can be
used to tune the response shape of the nominal closed-loop system
quantitatively
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Section 5.2 Quantitative Tuning of H2 PID Controllers

Figure: Relationship between the performance degree and the overshoot

e.g., 12% overshoot − > λ = 0.3θ
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Section 5.2 Quantitative Tuning of H2 PID Controllers

Figure: Relationship between the performance degree and the rise time
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Section 5.2 Quantitative Tuning of H2 PID Controllers

Figure: Relationship between the performance degree and the resonance
peak

e.g., 2dB − > λ = 0.22θ
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Figure: Relationship between the performance degree and the
perturbation peak
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Figure: Bode plot of the H2 PID control system
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Figure: Nyquist plot of the H2 PID control system
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Section 5.2 Quantitative Tuning of H2 PID Controllers

Figure: Relationship between the performance degree and the gain
margin
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Figure: Relationship between the performance degree and the phase
margin
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Section 5.2 Quantitative Tuning of H2 PID Controllers

Figure: Relationship between the performance degree and ISE
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Section 5.2 Quantitative Tuning of H2 PID Controllers

Robust performance:

Increase the performance degree monotonically until the required
response is obtained

The robust performance problem is not always solvable. Design
methods in this book provide an easily checked solution to this
problem.By adjusting the performance, it is easy to know whether
or not the required overshoot is achievable for some uncertain plant

Implementation of PID controllers: In traditional PID
controllers, TF is fixed (usually 0.1TD). If a traditional PID
controller has been installed in a system and one desires to use the
tuning method here, then the TF in the analytical formulas can be
omitted and only the other three parameters are used for tuning.
The responses are similar
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Section 5.2 Quantitative Tuning of H2 PID Controllers

Example

Consider a strip thickness control system. A typical tandem hot
strip mill is depicted in Figure. The metal slab is first heated to a
certain temperature in the reheating furnace. Its thickness is then
reduced in the roughing mill stand and finally refined in the
finishing mill stand. At the exit, the strip is cooled and coiled by
the down coiler. One main quantity to be controlled in the process
is the thickness of the strip. The thickness is controlled through
the roll force of the finishing mill.
It is known that the distance from the thickness meter to the
finishing mill stand is 4.9m, the speed of the strip is 0.7m/s, and
the time constant of the actuator is 3s. Then the transfer function
of the plant can be written as

G (s) =
0.2e−7s

3s + 1
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Figure: Control system for the thickness
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Section 5.2 Quantitative Tuning of H2 PID Controllers

Example (ctd.1)

In light of the design in the last section, the H2 PID controller is

C (s) =
1

0.2

(3s + 1)(3.5s + 1)

3.5λs2 + (λ+ 7)s
.

The performance degree is taken to be λ = 0.3θ, which
corresponds to about 12% overshoot according to Figure. A unit
step reference is added at t = 0 and a unit step load is added at
t = 100. The nominal response of the closed-loop system is shown
in Figure. The controller provides good response for the plant with
large time delay.
Now take TF = 0.1TD in the H2 PID controller. It is seen in
Figure that the response given by the approximate H2 PID
controller is similar to that given by the original H2 PID controller
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Figure: System response for the H2 PID controller
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Section 5.3 H2 PID Controllers for the Second-Order Plant

5.3 H2 PID Controllers for the Second-Order Plant

Assume that the plant is given by

G (s) =
Ke−θs

(τ1s + 1)(τ2s + 1)

By employing the first-order Taylor series expansion, the following
approximate plant is obtained:

G (s) ≈ K (1− θs)

(τ1s + 1)(τ2s + 1)

Define the optimal performance index as

min ‖W (s)S(s)‖2

If the system input is a unit step, W (s) = 1/s is taken
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Section 5.3 H2 PID Controllers for the Second-Order Plant

To guarantee a finite 2-norm and to have the asymptotic property,
the following constraint should be satisfied:

lim
s→0

[1− G (s)Q(s)] = 0

It follows that

Q(0) =
1

G (0)
=

1

K

Then all Q(s)s that satisfy the constraint are in the form of

Q(s) =
1

K
+ sQ1(s)

where Q1(s) is a stable transfer function. Then

‖W (s)S(s)‖22 =

∥∥∥∥W (s)

{
1− G (s)

[
1

K
+ sQ1(s)

]}∥∥∥∥2
2
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Section 5.3 H2 PID Controllers for the Second-Order Plant

=

∥∥∥∥τ1τ2s + τ1 + τ2 + θ

(τ1s + 1)(τ2s + 1)
− K (1− θs)Q1(s)

(τ1s + 1)(τ2s + 1)

∥∥∥∥2
2

=

∥∥∥∥(τ1τ2s + τ1 + τ2 + θ)(1 + θs)

(τ1s + 1)(τ2s + 1)(1− θs)
− K (1 + θs)Q1(s)

(τ1s + 1)(τ2s + 1)

∥∥∥∥2
2

=

∥∥∥∥ 2θ

1− θs
+

(τ1τ2s + τ1 + τ2 − θ)

(τ1s + 1)(τ2s + 1)
− K (1 + θs)Q1(s)

(τ1s + 1)(τ2s + 1)

∥∥∥∥2
2

Expanding the right-hand side gives that

‖W (s)S(s)‖22

=

∥∥∥∥ 2θ

1− θs

∥∥∥∥2
2

+

∥∥∥∥(τ1τ2s + τ1 + τ2 − θ)

(τ1s + 1)(τ2s + 1)
− K (1 + θs)Q1(s)

(τ1s + 1)(τ2s + 1)

∥∥∥∥2
2

Minimize ‖W (s)S(s)‖2. The unique optimal solution is

Q1opt(s) =
τ1τ2s + τ1 + τ2 − θ

K (1 + θs)
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2
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(τ1s + 1)(τ2s + 1)

∥∥∥∥2
2

=

∥∥∥∥ 2θ

1− θs
+

(τ1τ2s + τ1 + τ2 − θ)
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(τ1s + 1)(τ2s + 1)
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2
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∥∥∥∥ 2θ
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2

+

∥∥∥∥(τ1τ2s + τ1 + τ2 − θ)

(τ1s + 1)(τ2s + 1)
− K (1 + θs)Q1(s)

(τ1s + 1)(τ2s + 1)

∥∥∥∥2
2
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Section 5.3 H2 PID Controllers for the Second-Order Plant

Consequently,

Qopt(s) =
(τ1s + 1)(τ2s + 1)

K (1 + θs)

Introduce the following filter to roll Qopt(s) off at high
frequencies:

J(s) =
1

λs + 1

We have

Q(s) = Qopt(s)J(s) =
(τ1s + 1)(τ2s + 1)

K (1 + θs)(λs + 1)

Q(s) satisfies the constraint for asymptotic tracking. The unity
feedback loop controller is

C (s) =
Q(s)

1− G (s)Q(s)
=

1

K

(τ1s + 1)(τ2s + 1)

λθs2 + (λ+ 2θ)s
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Section 5.3 H2 PID Controllers for the Second-Order Plant

Compare it with

C (s) = KC

(
1 +

1

TI s
+ TDs

)
1

TF s + 1

parameters of the PID controller are

TF =
λθ

2λ+ θ
,TI = τ1 + τ2,TD =

τ1τ2
τ1 + τ2

,KC =
τ1 + τ2

K (λ+ 2θ)

Normally, the value of λ is chosen between 0.2θ and 1.2θ

Example

Consider the plant given in the last chapter:

G (s) =
0.54e−15s

(15s + 1)2
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Example (ctd.1)

Take λ = 0.9θ for the H∞ PID controller:

C (s) =
1

0.54

(15s + 1)2

λ2s2 + (2λ+ 15)s

The H2 PID controller is

C (s) =
1

0.54

(15s + 1)2

15λs2 + (λ+ 30)s

The parameter of the H2 PID controller is chosen in such a way
that the closed-loop system has the same overshoot as that with
an H∞ PID controller. In this case, λ = 0.78θ. A unit step
reference is added at t = 0 and a unit step load is added at
t = 300. The nominal responses of the closed-loop system are
shown in Figure. The two controllers provide similar responses
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Figure: Responses of H∞ and H2 PID controllers
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Section 5.3 H2 PID Controllers for the Second-Order Plant

Load Responses

Note: The disturbance is always added at the plant input in
simulations when the ability to reject disturbances is considered.

Question: Why is the disturbance at the plant output not
considered?

Explanation: Because the transfer function from the reference
r(s) to the output y(s) is T (s), the transfer function from the
output disturbance d(s) to the output y(s) is S(s), and that

S(s) + T (s) = 1

In other words, the closed-loop response and the response of the
output disturbance are complementary (Figure)
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Section 5.3 H2 PID Controllers for the Second-Order Plant

Figure: Closed-loop response and the output disturbance response
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Section 5.4 Control of Inverse Response Processes

5.4 Control of Inverse Response Processes

Goal of this section: Employ a simple NMP plant to compare the
features of the H∞ controller and the H2 controller

Feature of NMP plants: For stable plants, with the same
magnitude there exist plants exhibiting less phase than NMP plants
One example:

G (s) =
1− s

1 + s

Its magnitude is |G (jω)| = 1 and its phase is ∠G (jω) = arctan 2ω/
(ω2 − 1). Obviously, there exist other plants with the same
magnitude and less phase. For example, the magnitude of
G (s) = 1 is 1 and the phase is 0
NMP plants are difficult to control
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Inverse Response Process

The inverse response process is a special NMP plant

An example: An inverse response may occur in a distillation
column. When the steam pressure to the reboiler is suddenly
increased. The initial effect is usually to increase the amount of
frothing on the trays above the reboiler, causing a rapid spillover of
liquid from these trays into the reboiler. This effect results in an
initial increase in the rebolier liquid level. However, the increase in
steam pressure ultimately will decrease the reboiler liquid level by
boiling off more liquid.

Feature of the inverse response process: Its transfer function
has one zero or an odd number of zeros in the open RHP
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Figure: Two opposing first-order processes

The simplest inverse response process consists of two first-order
plants with opposing effects. The transfer function of the whole
plant is

G (s) =
K1

τ1s + 1
− K2

τ2s + 1
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or

G (s) =
(K1τ2 − K2τ1)s + (K1 − K2)

(τ1s + 1)(τ2s + 1)

Condition for the occurrence of inverse response:

τ1/τ2 > K1/K2 > 1

System response: The process 2 initially reacts faster than the
process 1, but the process 1 ultimately reaches a higher steady
state value than the process 2 (Figure). The transfer function of
the plant has a zero in the open RHP:

zr =
K2 − K1

K1τ2 − K2τ1
> 0
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Figure: Overall response for τ1/τ2 > K1/K2 > 1
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Optimal Control

H∞ control: The worst ISE resulted from a set of energy-bounded
inputs is minimized:

min sup
r(t)
‖e(t)‖2

or equivalently, the ∞-norm of the weighted sensitivity function is
minimized:

min ‖W (s)S(s)‖∞
By Maximum Modulus Theorem, we have

‖W (s)S(s)‖∞ ≥ 1/zr

It can be varified that

C (s) =
1

(K1 − K2)

(τ1s + 1)(τ2s + 1)

λ2s2 + (2λ+ K2τ1 − K1τ2)s
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Thus, the H∞ optimal solution can be reached by only a PID
controller. The closed-loop transfer function is

T (s) =
−z−1r s + 1

(λs + 1)2

Notice that no poles of the plant appears in T (s). All of them are
canceled by the H∞ controller.

H2 control: Minimizes the ISE resulted from the impulse input:

min ‖e(t)‖2

or equivalently, the 2-norm of the weighted sensitivity function is
minimized:

min ‖W (s)S(s)‖2
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It is easy to obtain the following H2 controller:

C (s) =
1

(K1 − K2)

(τ1s + 1)(τ2s + 1)

λz−1r s2 + (2z−1r + λ)s

which is also a PID controller. The closed-loop transfer function is

T (s) =
−z−1r s + 1

(z−1r s + 1)(λs + 1)

Factorize the plant into the MP part and the all-pass part:

G (s) = (K1 − K2)
(z−1r s + 1)

(τ1s + 1)(τ2s + 1)

−z−1r s + 1

z−1r s + 1

It is seen that the H2 controller only cancels the poles in the MP
part of the plant, while those poles in the all-pass part are retained
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Filter

The filter that makes the controller proper is not unique
The constraint imposed on the filter: It should be a low-pass
transfer function satisfying the requirement on the asymptotic
tracking

If the following filter is chosen for the H2 controller:

J(s) =
z−1r s + 1

(λs + 1)2

then the H2 controller will be identical to the H∞ controller.
Certainly, the H2 controller can also be equivalent to some other
controllers by selecting an appropriate filter
Side-effect: Such a filter is seldom used, since it introduces
additional dynamics
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Time Domain Responses

Since there exists no time delay in the plant, the response of the
closed-loop system can be easily computed. For example, the
response of the H∞ controller is

h(t) = 1−
(

1 +
t

λ
+

tz−1r

λ2

)
e−t/λ

The response does not have an overshoot. Let dh(t)/dt = 0. One
can get the time that the peak of the inverse response happens:

t =
λ

1 + λzr

Substituting this into h(t) gives the peak of the inverse response:

1− 1 + λzr
λzr

e−1/(1+λzr )

Let h(t) = 0.9. One can get the rise time
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Application Scope

On the surface:
H2 control− >A known specific input− > Limited scope
H∞ control− >All energy-bounded inputs− >Much wider scope

However, this is not the case

Goal of introducing weights: Express the design procedure in a
unified form for inputs that differ from the impulse
H∞ optimal control: The choice of W (s) corresponds with the
input. Once the weighting function is determined, the most
frequent inputs are assumed

Conclusion: There is no evident difference in the applying scope
of the two controllers
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Section 5.4 Control of Inverse Response Processes

Similar insights comes also from the system gain. Recall the
discussion in Chapter 3:

‖e(t)‖∞ ≤ ‖W (s)S(s)‖2 ‖r(t)‖2

Thus, another objective of the H2 optimal control is to minimize
the maximum magnitude of the error for energy-bounded inputs

Example

Magnetic levitation (maglev) trains may replace airplanes on
routers of several hundred kilometers (Figure). In a maglev system,
vehicles are suspended on a guideway above the highway and
guided by magnetic forces instead of relying on wheels or
aerodynamic forces. Maglev travel would be fast, operating at 500
km/hour. Ideally maglev trains can offer the environmental and
safety advantages of a train and the speed of an airplane
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Figure: Diagram of the maglev train
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Example (ctd.1)

There is an electronic pas de deux between the vehicle’s weight
and the repelling force of the electromagnets. The gap between
each arm and the guideway is measured 100 000 times per second.
This distance is fed to a control system, in which the current in the
support magnets is continually adjusted so as to reach an
equilibrium point at which the weight of the vehicle is supported by
the magnet repellence. The result: the vehicle hovers and the gap
between each arm and the underside of the guideway is kept
between 10± 2mm. The dynamic model of the gap is

G (s) =
s − 4

(s + 2)2
.
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Example (ctd.2)

The H∞ controller is

C (s) = − (s + 2)2

4λ2s2 + (8λ+ 1)s
,

with the performance degree λ = 1. The H2 controller is

C (s) = − (s + 2)2

λs2 + (4λ+ 2)s
.

Its performance degree is tuned so that the two controllers have
the same overshoot: λ = 1.6. A unit step reference is added at
t = 0 and a unit step load is added at t = 30. The responses of
the closed-loop system are shown in Figure. Although thoroughly
different norms are used, the obtained responses are similar
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Figure: Responses of the gap control system
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5.5 PID Controllers Based on the Maclaurin Series
Expansion

Preceding designs: Employ the rational approximation to expand
the time delay, and then the controller was designed for the
approximate plant

This section: The desired controller is first designed for the
original plants with time delay, and then a PID controller is derived
by the rational approximation of the obtained overall controller

Two important features:

1 It can provide better performance

2 It can be directly used for high-order plants
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Consider a stable MP plant described by

G (s) =
KN−(s)

M−(s)
e−θs

where N−(s) and M−(s) are the polynomials with roots in the
LHP, N−(0) = M−(0) = 1, and deg{N−(s)} ≤ deg{M−(s)}. The
desired closed-loop transfer function is chosen as follows:

T (s) =
e−θs

(λs + 1)nj

where nj = deg{M−(s)} − deg{N−(s)} for strictly proper plants
and nj = 1 for bi-proper plants. In the next chapter, it will be
proved that the desired closed-loop transfer function is suboptimal.
Since Q(s) = T (s)/G (s) is stable, the closed-loop system is
internally stable. Then the controller is

C (s) =
1

G (s)

T (s)

1− T (s)
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Here, only stable MP plants are considered. The design procedure
for NMP plants is similar

The problem now reduces to that find a PID controller that
approximates the desired controller
A method: Use the Maclaurin series expansion

Since

lim
s→0

[
(λs + 1)nj − e−θs

]
= 0

C (s) has a pole at the origin. Expanding C (s) in a Maclaurin
series gives

C (s) =
f (s)

s
with

f (s) = f (0) + f ′(0)s +
f ′′(0)

2!
s2 + ...
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The first three terms are taken to approximate the desired
controller. The three terms form a PID controller:

C (s) = KC

(
1 +

1

TI s
+ TDs

)
where

KC = f ′(0), TI = f ′(0)/f (0), TD =
f ′′(0)

2f ′(0)

Certainly, one can also take the first two terms to form a PI
controller.
Now let us see how to compute the controller parameter with a
given plant. For convenience of presentation, let

N(s) =
M−(s)

KN−(s)

M(s) =
(λs + 1)nj − e−θs

s
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The values of f (s) and its first-order and second-order derivatives
at the origin are

f (0) =
N(0)

M(0)

f ′(0) =
N ′(0)M(0)−M ′(0)N(0)

M(0)2

f ′′(0) =

N ′′(0)M(0)2 −M ′′(0)N(0)M(0)−
2M ′(0)N ′(0)M(0) + 2M ′(0)2N(0)

M(0)3

If the plant is of first-order; that is,

G (s) =
Ke−θs

τs + 1
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we have

N(0) =
1

K
, N ′(0) =

τ

K
, N ′′(0) = 0

M(0) = λ+ θ, M ′(0) = −θ
2

2
, M ′′(0) =

θ3

3

The function f (s) and its first and second derivatives at the origin
are given by

f (0) =
1

K (λ+ θ)

f ′(0) =
θ2 + 2λτ + 2θτ

2K (λ+ θ)2

f ′′(0) =
θ2(−2λθ + θ2 + 6λτ + 6θτ)

6K (λ+ θ)3
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Consequently, the PID controller parameters are

TI = τ +
θ2

2(λ+ θ)

KC =
TI

K (λ+ θ)

TD =
θ2(3TI − θ)

6TI (λ+ θ)

When a second-order model is used:

G (s) =
Ke−θs

(τ1s + 1)(τ2s + 1)

Utilizing the Maclaurin series expansion, we have

N(0) =
1

K
, N ′(0) =

τ1 + τ2
K

, N ′′(0) =
2τ1τ2
K

M(0) = 2λ+ θ, M ′(0) = λ2 − θ2

2
, M ′′(0) =

θ3

3
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The function f (s) and its first and second derivatives are given by

f (0) =
1

K (2λ+ θ)

f ′(0) =
−2λ2 + θ2 + 2(2λ+ θ)(τ1 + τ2)

2K (2λ+ θ)2

f ′′(0) =

2τ1τ2(2λ+ θ)2 − θ3(2λ+ θ)/3−
(τ1 + τ2)(2λ2 − θ2)(2λ+ θ) + 2(λ2 − θ2/2)2

K (2λ+ θ)3

The PID controller parameters are

TI = τ1 + τ2 −
2λ2 − θ2

2(2λ+ θ)
,KC =

TI

K (2λ+ θ)

TD = TI − τ1 − τ2 +
12τ1τ2λ+ 6τ1τ2θ − θ3

TI (12λ+ 6θ)
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Problems: The integral and derivative constants computed based
on the above formulas might be negative for some plants
Two solving methods:

The designer can take only the first two terms to form a PI
controller

Take the first four terms to form a controller

Tuning: The effect of the performance degree on the closed-loop
response is similar to that in the H∞ PID controller and the H2

PID controller

Performance: Since more complicated formulas are used to
compute PID controller parameters, it is not surprised that the
Maclaurin PID controller can provide better performance than the
H∞ PID controller and the H2 PID controller.
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5.6 PID Controllers with the Best Achievable
Performance

An important problem: Explore the performance limit of a
controller

This section discusses the problem for PID controllers. More
precisely, the following problems are studied:

1 What a performance limit does the PID controller have?

2 Is it possible to analytically design the PID controller with
best achievable performance?

3 How can the PID controller be tuned for quantitative
performance and robustness?
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Two different design procedures have been developed in the
foregoing sections:

1 The PID controller is designed by reducing the order of the
plant

2 The PID controller is designed by employing the Maclaurin
series expansion to reduce the order of the desired controller

An improvement on the performance is possible

Since the Pade approximation can provide higher precision than
the Maclaurin series expansion, the PID controller will be designed
in this section by employing the Pade approximation for controller
reduction. The property of the Pade approximation guarantees that
the resulting controller provides the best performance that a PID
controller can achieve among current analytical design methods
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The solving of the problem follows the design procedure of the
Maclaurin PID controller. First, expand the desired controller
C (s):

C (s) =
f (s)

s
=

1

s

[
f (0) + f ′(0)s +

f ′′(0)

2!
s2 +

f (3)(0)

3!
s3 + ...

]
As we know, the ideal PID controller has a pure derivative term in

it and thus is not physically realizable. Realizable PID controllers
are usually in three forms, which have been listed in Section ??.
All of the three can be expressed in a unified form:

C (s) =
a2s

2 + a1s + a0
s(b1s + 1)

where a0, a1, a2 and b1 are positive real numbers. Let the Pade
approximation of f (s) be

f (s) =
a2s

2 + a1s + a0
b1s + 1
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Then, we have  a0
a1
a2

 =

 f (0) 0
f ′(0) f (0)

f ′′(0)/2! f ′(0)

[ 1
b1

]
b1f
′′(0)/2! = −f (3)(0)/3!

It follows that

a0 = f (0)

a1 = b1f (0) + f ′(0)

a2 = b1f
′(0) + f ′′(0)/2!

b1 = − f (3)(0)

3f ′′(0)
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Assume that the PID controller is in the form of

C = KC

(
1 +

1

TI s
+ TDs

)
1

TF s + 1

The controller parameters are

KC = a1, TI =
a1
a0
, TD =

a2
a1
, TF = b1

Disadvantage of the Pade approximation: It may be unstable
even if the original transfer function is stable
Solving methods:

1 If the controller is required to be a PID controller whose order
is less than three. One could choose the first two or three
terms of the Maclaurin series expansion as a PID controller

2 If the designer does not have a strict requirement on the
controller form, one could choose a PID controller with a
second-order lag or a higher order controller
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Consider the following first-order plant with time delay:

G (s) =
Ke−θs

τs + 1

The function f (s) and its derivatives are given by

f (0) =
1

K (λ+ θ)

f ′(0) =
θ2 + 2λτ + 2θτ

2K (λ+ θ)2

f ′′(0) =
θ2(−2λθ + θ2 + 6λτ + 6θτ)

6K (λ+ θ)3

f (3)(0) =
θ3(−2τλθ + 2τθ2 − 4λ2τ − 2θ2λ+ θλ2)

4K (λ+ θ)4
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Parameters of the PID controller are

a0 =
1

K (λ+ θ)

a1 =
θ3 + 6τθ2 − θ2λ+ 12τ2θ + 12τ2λ

2K (−2λθ + θ2 + 6τλ+ 6τθ)(λ+ θ)

a2 =
θ(θ3 + 6τθ2 + 24τ2θ − 6τθλ+ 24τ2λ)

12K (−2λθ + θ2 + 6τλ+ 6τθ)(λ+ θ)

b1 = −θ(−2τλθ + 2τθ2 − 4λ2τ − 2θ2λ+ θλ2)

2(−2λθ + θ2 + 6τλ+ 6τθ)(λ+ θ)

While the above PID controller provides the best achievable
performance as compared with the H∞ controller and the H2

controller, the corresponding formulas are in the most complicated
form
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5.7 Choice of the Filter

Function of the Filter

1 The optimal controller Qopt(s) is usually improper. One main
function of the filter is to make Qopt(s) proper. Certainly, the
controller becomes suboptimal after the filter is introduced.

2 Since S(s) = 1− G (s)Q(s) and T (s) = G (s)Q(s), the filter
parameter can be utilized to tune the nominal performance
and the robustness, and to quantitatively trade off between
the two objectives.

3 There is a direct relationship between the filter parameter and
the control variable, since u(s) = Q(s)r(s). If the control
structure cannot be modified, one can confine the magnitude
of the control variable by adjusting the filter parameter.
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How to Choose the Filter

The filter should at least satisfy the following requirements:

1 The closed-loop system is internally stable.

2 The controller Q(s) = Qopt(s)J(s) is proper.

3 Asymptotic tracking is achieved.

The first condition is easy to satisfy. If the plant is stable, the
closed-loop system is internally stable as long as Q(s) is stable.

The second condition can also be easily achieved. As we know, an
improper transfer function implies that the degree of its numerator
is greater than that of its denominator. To make it proper, one can
simply introduce a filter with its numerator degree less than its
denominator degree. As the filter is stable, it is of low-pass.
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Section 5.7 Choice of the Filter

Now consider the third condition. As a basic requirement on the
closed-loop performance of control systems, the tracking error
should vanish asymptotically. Recall that for asymptotic tracking a
Type m system should satisfy

lim
s→0

1− G (s)Qopt(s)J(s)

sk
= 0, k = 0, 1, ...,m − 1

or

lim
s→0

dk

dsk
[1− G (s)Qopt(s)J(s)] = 0, k = 0, 1, ...,m − 1

However, these conditions are still not enough for determining the
structure and the parameter of a filter. For example, one can
choose a filter with either single parameter or with multiple
parameters and multiple zeros
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Section 5.7 Choice of the Filter

Function of zeros: Can be utilized to satisfy some special design
objectives, such as tracking a complex input
Side effect of zeros: Zeros are seldom introduced to the filter
unless it is necessary, since this will change performance in a way
difficult to grasp and may limit the performance as well

The usual structure of a filter consists of one or more first-order
lags in series. To simplify the design task, usually there is only one
parameter in the filter:

J(s) =
βm−1s

m−1 + ...+ β1s + β0
(λs + 1)nj

where λ is the performance degree, nj should be chosen large
enough to make Q(s) = Qopt(s)J(s) proper, for a stable plant m
equals the number of poles that the input has at the origin, and βi
(i = 0, 1, ...,m − 1) are chosen to satisfy the requirement for
asymptotic tracking
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Section 5.7 Choice of the Filter

If the plant is stable, m = 1 for a step input. Since

lim
s→0

[1− G (s)Qopt(s)J(s)] = 0

β0 = 1

In the H2 optimal control of a stable rational MP plant,
G (s)Qopt(s) = 1. Hence, the Type 1 filter is as follows:

J(s) =
1

(λs + 1)nj

Such a system can track inputs of step type without offset. If the
input is a ramp, then a Type 2 filter must be used:

J(s) =
njλs + 1

(λs + 1)nj

Typical responses of filters are shown in Figure
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Section 5.7 Choice of the Filter

Figure: Typical response of the filter
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Section 5.7 Choice of the Filter

Order of the filter: However, the higher the order, the more
complicated the controller. Due to this reason, the order of the
filter should be chosen such that Q(s) is bi-proper for a strictly
proper plant, or the degree of its denominator is higher by one
than that of its numerator for a bi-proper plant

Performance degree: For an improved model, a better
performance can be obtained by decreasing the performance
degree. When the uncertainty increases, one has to increase the
performance degree to obtain better robustness. In this way, a
reasonable tradeoff between the two competing objectives can
easily be achieved
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Section 5.7 Choice of the Filter

Constraint on the Control Variable

Objective of H2 control:

min

∫ ∞
0

e2(t)dt

Two internally related problems:

The controller is improper, which is not physically realizable

The magnitude peak of the control variable is usually large

Solving method: Use a suboptimal controller.

Different methods have been proposed to design a suboptimal H2

controller, which implies different kinds of degradation in the
optimal performance
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Section 5.7 Choice of the Filter

For example, one can use the performance index

min

∫ ∞
0

[Qe2(t) + Ru2(t)]dt

where Q and R are the constant weights. The optimal controller
designed by this index is suboptimal for the original ISE index

Shortcoming of the design: It is not known how to determine the
weights; moreover, the computation complexity is relatively high

In some literature, Q and R are simply taken as 1:

min

∫ ∞
0

[e2(t) + u2(t)]dt

Evidently, this is not a good choice, since the system performance
depends on the weight
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Section 5.7 Choice of the Filter

Solution of this book: Choose an appropriate filter J(s). This
works because u(s) = Qopt(s)J(s)r(s)

Figure: Two different optimizing procedures
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End of Chapter 5
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