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Section 12.1 Diagonal Factorization for Quasi-H∞ Control

12.1 Diagonal Factorization for Quasi-H∞ Control

Procedure of the classical method for decoupling control:
1 Design a decoupler so that the MIMO plant is decomposed

into a series of independent SISO plants
2 A SISO method is used to design controllers for these SISO

plants

Some unsolved problems in the method:

It is not applicable to NMP plants and plants with RHP poles

It is difficult to analyze the effect of the decoupler on the
closed-loop performance and robustness

Procedure of the design method in this chapter:
1 It is not applicable to NMP plants and plants with RHP poles
2 It is difficult to analyze the effect of the decoupler on the

closed-loop performance and robustness
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Section 12.1 Diagonal Factorization for Quasi-H∞ Control

Consider the IMC structure shown in Figure, where G̃(s) is an
n × n plant, G(s) is the model, and Q(s) is an n × n controller.
The closed-loop transfer function matrix is T(s) = G(s)Q(s)

In quasi-H∞ decoupling control, the plant can be proper, have
time delays, or have poles or zeros on the imaginary axis or in the
open RHP
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Section 12.1 Diagonal Factorization for Quasi-H∞ Control

If the plant has poles in the closed RHP, the controller has to be
implemented in the unity feedback loop shown in Figure, where
C(s) = Q(s)[I− G(s)Q(s)]−1 is an n × n controller

As stated in Section 10.4, the following assumptions are made for
the plant:

1. There is not any unstable hidden mode in G(s)

For quasi-H∞ control, it is further assumed that

2. G(s) is of full normal rank, that is, rank[G(s)] = n
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Section 12.1 Diagonal Factorization for Quasi-H∞ Control

If the second assumption is not satisfied, the closed-loop transfer
function matrix T(s) = G(s)C(s)[I + G(s)C(s)]−1 must be
identically singular. When G(s) is not of full normal rank, a
slight perturbation can be introduced in the coefficients of the
plant so that the second condition is satisfied

Unlike the classical decoupling control, in quasi-H∞ control there
is not an independent step for decoupler design. The decoupler
and the controller are expressed in the form of one transfer
function matrix and are designed in one step

The key of the design is to define a diagonal factorization, in which
the closed RHP zero and the time delay are separated from the
plant. In the next section it will be seen that the decoupled
response is obtained on the basis of such a factorization
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Section 12.1 Diagonal Factorization for Quasi-H∞ Control

The factorization for the closed RHP zero and the time delay can
be obtained easily for a SISO plant, but the extension to the
MIMO case should be properly defined

Write the plant G(s) with multiple time delays in the form of

G(s) =

 G11(s)e−θ11s · · · G1n(s)e−θ1ns

...
. . .

...
Gn1(s)e−θn1s · · · Gnn(s)e−θnns


where Gij(s)(i , j = 1, 2, ..., n) are scalar rational transfer functions

and θij ≥ 0 are time delays. Let the inverse of the plant be

G−1(s) =

 G 11(s)e−θ
11s · · · G 1n(s)e−θ

1ns

...
. . .

...

Gn1(s)e−θ
n1s · · · Gnn(s)e−θ

nns
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Section 12.1 Diagonal Factorization for Quasi-H∞ Control

where G ji (s)e−θ
ji s(j , i = 1, 2, ..., n) are the elements of G−1(s),

and θji are real numbers denoting the maximum time delays that
can be separated from each element. For example, in the following
element

e−3s

2s + 1
+

e−2s

3s + 1
=

(
e−s

2s + 1
+

1

3s + 1

)
e−2s

the maximum time delays that can be separated is 2

Consider the factorization for the time delay first. Some elements
of G−1(s) may contain predictions (that is, θji < 0). This
implies that the resulting control system is physically irrealizable

To avoid this, these predictions have to be removed. This can be
reached by postmultiplying G−1(s) by a diagonal matrix GD(s)
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Section 12.1 Diagonal Factorization for Quasi-H∞ Control

Let the matrix without predictions be GO
−1(s). We have

GO(s) = G−1
D (s)G(s). GD(s) should be chosen so that it

counteracts those predictions and at the same time no additional
time delays are introduced

Definition

Let θli (i = 1, 2, ..., n) be the largest prediction of the ith column of
G−1(s), that is, θli = maxj θ

ji , j = 1, 2, ..., n. The H∞ diagonal
factorization for the time delay is defined as

GD(s) =

 e−θl1s · · · 0
...

. . .
...

0 · · · e−θlns


In particular, for rational plants GD(s) = I.
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Section 12.1 Diagonal Factorization for Quasi-H∞ Control

Since the elements of GD(s) are time delays, no closed RHP
zeros and poles are cancelled when forming GO(s)

Now consider the factorization for closed RHP zeros. The plant
may have closed RHP zeros in addition to the time delays. This
implies that GO

−1(s) is unstable. Then, an internally unstable
system will be obtained

To make GO
−1(s) stable, the unstable poles in each element must

be removed. This can be reached by postmultiplying GO
−1(s) by a

diagonal matrix GN(s)

Let the obtained matrix be GMP
−1(s). We readily obtain that

GMP(s) = GN
−1(s)GO(s). According to the definition in Section

10.1, GMP(s) is MP
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Section 12.1 Diagonal Factorization for Quasi-H∞ Control

Assume that zj(Re(zj) ≥ 0, j = 1, 2, ..., rz) are unstable poles of
GO
−1(s)

Definition

Let kij(i = 1, 2, ..., n) be the largest multiplicity of the unstable
pole zj(j = 1, 2, ..., rz) in the ith column of GO

−1(s). The H∞
diagonal factorization for closed RHP zeros is

GN(s) =


rz∏
j=1

(−s/zj + 1)k1j · · · 0

...
. . .

...

0 · · ·
rz∏
j=1

(−s/zj + 1)knj


In particular, for MP plants GN(s) = I.
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Section 12.1 Diagonal Factorization for Quasi-H∞ Control

The factorization of G(s) for both the closed RHP zero and the
time delay can be written as follows:

G(s) = GD(s)GN(s)GMP(s)

In the factorization, GD(s) denotes the time delay part of the
plant, GN(s) is related to the closed RHP zeros of the plant, and
GMP(s) is the MP part of the plant

GO(s) = GN(s)GMP(s) is the “rational” part of the plant. It
should be emphasized that in MIMO systems GO(s) is generally
not rational. The element of GO(s) may have time delays

When the element of the plant involves time delays, it may have
infinite RHP zeros, that is, rz →∞ or kij →∞. The following
example illustrates such a case
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Section 12.1 Diagonal Factorization for Quasi-H∞ Control

Example

Consider the plant described by the following transfer function
matrix

G =

[
1 1
1 2e−s

]
G(s) has zeros at s = ln 2 + j2kπ, k = 0,±1,±2, .... Following the
factorization procedure in this section, we have

GD(s) = I

GN(s) = (−2e−s + 1)I

GMP(s) =
1

−2e−s + 1

[
1 1
1 2e−s

]
The rational part of the plant is GO(s) = GN(s)GMP(s). The
element of GO(s) has time delays.
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Section 12.1 Diagonal Factorization for Quasi-H∞ Control

Problem: When the numerator or denominator of the element in
GMP(s) involves multiple time delays, the design problem becomes
complicated

Solution: In this case, it is recommended to use rational
approximations to reduce the order of GO(s) or GMP(s). Rational
approximations make the design simpler and easier without loss of
too much precision

Tradeoff: The higher the order of the approximated numerator or
the denominator, the better the precision. The designer has to
trade off between the complexity and the precision
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Section 12.2 Quasi-H∞ Controller Design

12.2 Quasi-H∞ Controller Design

The design of MIMO control systems is similar to that of SISO
control systems:

1 A desired closed-loop transfer function matrix T(s) is
constructed based on the factorization developed in the last
section

2 Utilizing the T(s), the controller Q(s) is then derived

Feature of the design: This is a “no-weight” design. The
designer is not required to select weighting functions in the
procedure

Assume that the controller is designed for step inputs. Factorize
the plant: G(s) = GD(s)GN(s)GMP(s)
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Section 12.2 Quasi-H∞ Controller Design

If the plant is stable, the desired closed-loop transfer function
matrix can be chosen as

T(s) = Topt(s)J(s)

where

Topt(s) = GD(s)GN(s)

J(s) =

 J1(s) · · · 0
...

. . .
...

0 · · · Jn(s)


and

Ji (s) =
1

(λi s + 1)ni
, i = 1, 2, ..., n

Here λi (i = 1, 2, ..., n) are the performance degrees
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Section 12.2 Quasi-H∞ Controller Design

Let Topt(s) = G(s)Qopt(s). Then

Qopt(s) = G−1(s)Topt(s) = GMP
−1(s)

Relative degree: The degree of a transfer function’s denominator
polynomial-the degree of its numerator polynomial

Denote the largest relative degree of all the elements in the ith
column of Qopt(s) as αi . Then
ni = −αi for strictly proper columns (that is, at least one element
of the column is strictly proper)
ni = 1 for semi-proper columns (that is, every element of the
column is semi-proper)
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Section 12.2 Quasi-H∞ Controller Design

Utilizing the desired closed-loop transfer function matrix T(s) and
the factorization of G(s), the controller is obtained as follows:

Q(s) = G−1(s)T(s) = GMP
−1(s)J(s)

The controller can be implemented in the IMC structure, or in the
unity feedback loop:

C(s) = Q(s)[I− G(s)Q(s)]−1

When the plant is unstable, the desired closed-loop transfer
function matrix can be chosen as

T(s) = Topt(s)J(s)

where Topt(s) and J(s) keep the same form as that for stable
plants, but
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Section 12.2 Quasi-H∞ Controller Design

Ji (s) =
Nxi (s)

(λi s + 1)ni
, i = 1, 2, ..., n

Here Nxi (s)(i = 1, 2, ..., n) are polynomials with all roots in the
LHP, and Nxi (0) = 1. ni = deg{Nxi (s)}+ αi for strictly proper
columns and ni = deg{Nxi (s)}+ 1 for semi-proper columns

Assume that G(s) has rp unstable poles; The multiplicity of the
unstable pole pj (Re(pj) ≥ 0, j = 1, 2, ..., rp) is lj ; lij is the largest
multiplicity of pj in the ith row of G(s); The ith elements of
GD(s) and GN(s) are GDi (s) and GNi (s), respectively. Then Nxi (s)
is determined by

lim
s→pj

dk

dsk
[I − GDi (s)GNi (s)Ji (s)] = 0

i = 1, 2, ..., n; j = 1, 2, ..., rp; k = 0, 1, ..., lij − 1

Zhang, W.D., CRC Press, 2011 (No.2 USU) Version 1.0 19/73



Section 12.2 Quasi-H∞ Controller Design

with deg{Nxi (s)} =
rp∑
j=1

lij

For unstable plants, the controller must be implemented in the
unity feedback loop:

C(s) = Q(s)[I− G(s)Q(s)]−1

Furthermore, it is required that all the RHP zero-pole
cancellations in [I − G(s)Q(s)]G(s) are removed. Recall the
discussion in Section 8.1. This can be achieved by employing
rational approximations

It should be pointed out that the following condition

lim
s→pj

dk

dsk
det[I − G(s)Q(s)] = 0, j = 1, 2, ..., rp; k = 0, 1, ..., lij − 1

is not sufficient for internal stability
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Section 12.2 Quasi-H∞ Controller Design

By comparing the aforementioned two conditions, it can be found
that more closed RHP zeros have to be introduced in I −G(s)Q(s)
to guarantee the internal stability. This is the price for decoupling

Example

Consider the plant described by the following transfer function
matrix:

G(s) =

[ 1
s+3

1
s−2

2
s+3

s−1
s−2

]
The plant is NMP. It has one pole at s = −3, one pole at s = 2,
and one zero at s = 3. Assume that the controller is

Q(s) =

[ −(s+3)(s−1)
3(s+1)2

(s+3)(13s+1)
3(s+1)2

2(s−2)
3(s+1)2

−(s−2)(13s+1)
3(s+1)2

]
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Section 12.2 Quasi-H∞ Controller Design

Example (ctd.1)

We have

I− G(s)Q(s) =

[
s(s+7/3)
(s+1)2

0

0 16s(s−2)
3(s+1)2

]

It has a zero at s = 2. No more zeros are introduced by the
controller. Since

[I− G(s)Q(s)]G(s) =

[
s(s+7/3)

(s+3)(s+1)2
s(s+7/3)

(s−2)(s+1)2

32s(s−2)
3(s+3)(s+1)2

16s(s−1)
3(s+1)2

]

[I− G(s)Q(s)]G(s) is not stable. Hence, the closed-loop system is
not internally stable.
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Example (ctd.2)

Now consider another controller described by

Q(s) =

[ −(s+3)(s−1)(40s+1)
3(s+1)3

(s+3)(13s+1)
3(s+1)2

2(s−2)(40s+1)
3(s+1)3

−(s−2)(13s+1)
3(s+1)2

]

One readily obtains

I− G(s)Q(s) =

[
s(s−2)(s+55/3)

(s+1)3
0

0 16s(s−2)
3(s+1)2

]

It can be seen that one more zero is introduced at s = 2 by the
controller.

Zhang, W.D., CRC Press, 2011 (No.2 USU) Version 1.0 23/73



Section 12.2 Quasi-H∞ Controller Design

Example (ctd.3)

Since

[I− G(s)Q(s)]G(s) =

[
s(s−2)(s+55/3)
(s+3)(s+1)3

s(s+55/3)
(s+1)3

32s(s−2)
3(s+3)(s+1)2

16s
3(s+1)2

]

[I− G(s)Q(s)]G(s) is stable.

Question: When more RHP zeros have to be introduced for
internal stability

Answer: This has to be done if the closed RHP poles and their
multiplicities in the elements of at least one row of G(s) are not
the same
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Example

Consider the following plant:

G(s) =

[ 1
s+3

2
s+3

1
s−2

s−1
s−2

]
The plant has one pole at s = −3, one pole at s = 2, and one zero
at s = 3. The multiplicities of the closed RHP poles in every row
are the same. If the following controller is taken:

Q(s) =

[
(s+3)(s−1)
−3(s+1)2

2(s−2)(13s+1)
3(s+1)2

s+3
3(s+1)2

− (s−2)(13s+1)
3(s+1)2

]

the closed-loop response is decoupled.
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Section 12.2 Quasi-H∞ Controller Design

Example

ctd.1 It is evident that both

I− G(s)Q(s) =

[
s(s+7/3)
(s+1)2

0

0 16s(s−2)
3(s+1)2

]

and

[I− G(s)Q(s)]G(s) =

[
s(s+7/3)

(s+3)(s+1)2
2s(s+7/3)

(s+3)(s+1)2

16s
3(s+1)2

16s(s−1)
3(s+1)2

]

are stable. There is only one closed RHP zero in I− G(s)Q(s).
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Section 12.2 Quasi-H∞ Controller Design

The quasi-H∞ controller can also be designed with the following
procedure:

1 If the plant does not contain time delays (that is, GA(s) = I),
turn to 3.

2 If the plant contains time delays, take the rational part GO(s)
as the nominal plant.

3 If GO(s) does not have zeros in the closed RHP (that is,
GN(s) = I), take its inverse as Qopt(s) and turn to 5.

4 If GO(s) has zeros in the closed RHP, remove the factor that
contains the zeros (that is, GN(s)) and take the inverse of the
reminder as Qopt(s).

5 Introduce a filter to Qopt(s), compute C(s) and remove the
RHP zero-pole cancellation in C(s).
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Section 12.3 Analysis for Quasi-H∞ Control Systems

12.3 Analysis for Quasi-H∞ Control Systems

Nominal stability: According to the discussion in Section 10.4,
the closed-loop system is internally stable if and only if all the
elements in the following matrix are stable:

H(s) =

[
G(s)Q(s) [I− G(s)Q(s)]G(s)

Q(s) −Q(s)G(s)

]
The following theorems provide sufficient and necessary conditions

for the internal stability of the system designed in the last section

Theorem

The unity feedback control system is internally stable for the plant
with time delays if and only if

1 Q(s) is stable

2 [I− G(s)Q(s)]G(s) is stable
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Section 12.3 Analysis for Quasi-H∞ Control Systems

Proof.

Necessity is obvious. Consider sufficiency.
Assume that [I− G(s)Q(s)]G(s) is stable but G(s)Q(s) is not
stable. AS Q(s) is stable, the unstable pole of G(s)Q(s) should be
at the unstable poles of G(s). This implies that I− G(s)Q(s) is
unbounded at the unstable poles of G(s), which contradicts the
assumption. Hence, if [I− G(s)Q(s)]G(s) is stable, G(s)Q(s) is
stable.
Since

[I− G(s)Q(s)]G(s) = G(s)[I−Q(s)G(s)]

if [I− G(s)Q(s)]G(s) is stable, Q(s)G(s) is also stable.
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Section 12.3 Analysis for Quasi-H∞ Control Systems

Theorem

Assume that

1 lim
s→pj

dk

dsk
[I − GDi (s)GNi (s)Ji (s)] = 0, i = 1, 2, ..., n; j =

1, 2, ..., rp; k = 0, 1, ..., lij − 1

2 All the RHP zero-pole cancellations in [I − G(s)Q(s)]G(s) are
removed

Then, the unity feedback control system with a quasi-H∞
controller is internally stable.

Proof.

It is sufficient to prove that the two conditions in the last Theorem
hold.
It is evident that Q(s) = GMP

−1(s)J(s) is stable, because GMP(s)
is MP and J(s) is stable.
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Section 12.3 Analysis for Quasi-H∞ Control Systems

Proof ctd.1.

Now consider the stability of [I− G(s)Q(s)]G(s). Since

lim
s→pj

dk

dsk
[I − GDi (s)GNi (s)Ji (s)] = 0,

i = 1, 2, ..., n; j = 1, 2, ..., rp; k = 0, 1, ..., lij − 1,

all the unstable poles of G(s) are cancelled by I− G(s)Q(s) when
all the RHP zero-pole cancellations in [I − G(s)Q(s)]G(s) are
removed. Therefore, [I− G(s)Q(s)]G(s) must be stable.

Nominal performance: It is required that the system should have
a zero steady-state error. The quasi-H∞ controller is designed for
step inputs. In view of the discussion in Section 10.4, the system
should be of Type 1 for asymptotically tracking step inputs
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In other words, the closed-loop transfer function matrix should
satisfy the following condition:

lim
s→0

T(s) = I

Evidently, the quasi-H∞ controller satisfies the condition

Robustness: The robustness of the closed-loop system can be
tested by rigorous criteria introduced in Chapter 10.
As an alternative, the engineering tuning method for SISO systems
can be directly extended to MIMO systems; that is, increase the
performance degrees monotonically until the required
response is obtained

The advantage of this tuning procedure is that it is quantitative
and very simple. It can be used for the tuning of both nominal
performance and robustness.
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Section 12.3 Analysis for Quasi-H∞ Control Systems

One may find that some time delays or closed RHP zeros influence
other channels while some others not. To distinguish them, two
definitions are given

Definition

A time delay is canonical if at least one element of GD(s) contains
the time delay, provided that the greatest common time delay of
all elements of GD(s) has been removed

Definition

A RHP zero is canonical if at least one element of GN(s) has the
zero, provided that the greatest common factor of all elements of
GN(s) has been removed
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Section 12.3 Analysis for Quasi-H∞ Control Systems

A canonical time delay or a canonical RHP zero will not spread its
influence over all channels, whereas a non-canonical time delay or
a non-canonical RHP zero will affect all channels

Example

Consider the plant with the following transfer function matrix:

G(s) =
1

(s + 3)(s − 1)

[
s − 2 2(s − 2)

1 s − 1

]
The plant has a zero at s = 2 and a zero at s = 3. Since

GN(s) =

[
−(s−2)
s+2 0

0 1

]
−(s − 3)

s + 3

The zero at s=2 is canonical and the zero at s=3 is non-canonical
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Example

This example illustrates the effect of the non-canonical zeros.
Consider the plant in the forgoing example:

G(s) =

[ 1
s+3

1
s−2

2
s+3

s−1
s−2

]
If the controller is

Q(s) =

[ −(s+3)(s−1)(40s+1)
3(s+1)3

(s+3)(13s+1)
3(s+1)2

2(s−2)(40s+1)
3(s+1)3

−(s−2)(13s+1)
3(s+1)2

]

the closed-loop transfer function matrix is

T(s) =

[
40s+1
(s+1)3

0

0 13s+1
(s+1)2

] (
− s

3
+ 1
)

The zero at s = 3 affects all channels
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12.4 Increase Time Delays for Improving
Performance

Two classes of methods in literature for enhancing the
closed-loop performance:

1 Develop control schemes that have a better ability for time
delay compensation

2 Modify the plant to reduce the effect of NMP factors

The discussion in Section 12.2 falls into the first class, while the
second class will be discussed in this section.

A fact in MIMO systems: Decreasing or increasing the time
delay may result in improved performance
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Section 12.4 Increase Time Delays for Improving Performance

Usually, it is impossible to decrease the time delay in a plant, but
in many cases it is possible to increase it. For example, the time
delay can be increased by simply increasing the length of the pipe
that connects the process units

This section considers the strategy enhancing performance by
increasing the time delay

Let θsi (i = 1, 2, ..., n) be the smallest time delay of the ith row of
G(s), that is, θsi = minj θij , j = 1, 2, ..., n. Then

The minimum time necessary for any inputs to affect the output i
is θsi
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Theorem

The element with the largest prediction in each column of G−1(s)
is on the diagonal if and only if the rows and columns of G(s) are
rearranged so that the smallest time delay of G(s) in each row is at
the diagonal. If this is true, the largest prediction is eθsi

Proof.

Prove sufficiency first. Assume that G(s) has been rearranged so
that the smallest time delay in each row is at the diagonal, that is,
θsi = θjj , j = 1, 2, ..., n. It is known that

G−1(s) =
adj[G(s)]

det[G(s)]
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Section 12.4 Increase Time Delays for Improving Performance

Proof ctd.1.

The largest time delay that can be separated from det[G(s)] is

θdet = θ11 + θ22 + ...+ θnn

Consider the jth column of adj[G(s)]. Compare the maximum time
delays that can be separated from the diagonal element (denoted
by θajj) and the non-diagonal element (denoted by θaij , i 6= j):

θajj = θ11 + ...+ θ(i−1)(i−1) + θii + θ(i+1)(i+1) +

...+ θ(j−1)(j−1) + θ(j+1)(j+1) + ...+ θnn.

θaij = θ11 + ...+ θ(i−1)(i−1) + θij + θ(i+1)(i+1) +

...+ θ(j−1)(j−1) + θ(j+1)(j+1) + ...+ θnn.

Zhang, W.D., CRC Press, 2011 (No.2 USU) Version 1.0 39/73



Section 12.4 Increase Time Delays for Improving Performance

Proof ctd.2.

Since

θjj ≤ θij , ∀i , j = 1, 2, ..., n

the result is

θajj ≤ θaij

Subtracting the two sides of the inequality from θdet yields

θdet − θajj ≥ θdet − θaij

θdet − θajj = θjj = θsi is the prediction of the diagonal element in
the jth column of G−1(s), while θdet − θaij is the prediction of the
non-diagonal element in the jth column of G−1(s).
The sufficiency proof is reversible
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Section 12.4 Increase Time Delays for Improving Performance

It may not be feasible to make the smallest time delay in each row
at the diagonal by rearranging rows and columns of a plant

The idea here: Increase individual delays θij by the minimum
amount, so as to make the minimum time delays occur at the
diagonal

Key: Formulate this problem mathematically

Let bij(i , j = 1, 2, ..., n) be a continuous variable that represents
the modified time delay. The binary variable yij is introduced,
which takes values of 0− 1 and is associated with the element bij .
When yij = 1, the corresponding element has the smallest time
delay. The minimum time delay necessary to improve the
closed-loop response is given by the solution of the following
optimization problem:
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Section 12.4 Increase Time Delays for Improving Performance

Min
∑
i

∑
j

bij

subject to ∑
i

yij = 1, j = 1, 2, ..., n (1)∑
j

yij = 1, i = 1, 2, ..., n (2)

∑
j

(yijbij)− bij ≤ 0, i , j = 1, 2, ..., n (3)

θij ≤ bij , i , j = 1, 2, ..., n (4)

bij ≤ max
j
θij , i , j = 1, 2, ..., n (5)

yij = 0, 1, i , j = 1, 2, ..., n (6)
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Constraints (1) and (2) imply that only one element is picked up
as the element with the smallest time delay

Constraint (3) states that the selected element indeed has the
smallest time delay. The first term in its left-hand side picks up
one element from each row, and compares it with the other
elements in this row (that is, the second term in its left-hand side)

Constraints (4) and (5) provide lower and upper bounds for the
continuous variable

This mathematical formulation is a mixed-integer nonlinear
programming problem, since the constraint (3) involves the
bilinearity of the form yijbij . The constraint (3) is not convex. This
implies that it is hard to obtain the global optimal solution

Zhang, W.D., CRC Press, 2011 (No.2 USU) Version 1.0 43/73



Section 12.4 Increase Time Delays for Improving Performance

Constraints (1) and (2) imply that only one element is picked up
as the element with the smallest time delay

Constraint (3) states that the selected element indeed has the
smallest time delay. The first term in its left-hand side picks up
one element from each row, and compares it with the other
elements in this row (that is, the second term in its left-hand side)

Constraints (4) and (5) provide lower and upper bounds for the
continuous variable

This mathematical formulation is a mixed-integer nonlinear
programming problem, since the constraint (3) involves the
bilinearity of the form yijbij . The constraint (3) is not convex. This
implies that it is hard to obtain the global optimal solution

Zhang, W.D., CRC Press, 2011 (No.2 USU) Version 1.0 43/73



Section 12.4 Increase Time Delays for Improving Performance

The problem can be overcome by converting the nonlinearity
programming into a linear programming. The bilinearity of the
form yijbij , where yij is an integer and bij is a continuous variable,
can be substituted by a continuous variable hij with

hij = yijbij

bij − U(1− yij) ≤ hij

Lyij ≥ hij

bij − L(1− yij) ≤ hij

Uyij ≥ hij

i , j = 1, 2, ..., n

where the scalars L and U satisfy

L ≤ bij ≤ U, i , j = 1, 2, ..., n
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In the above formulation, one can take L = 0 and U = maxij(θij)

Utilizing the conversion, the formulation becomes

Min
∑
i

∑
j

bij

subject to ∑
i

yij = 1, j = 1, 2, ..., n∑
j

yij = 1, i = 1, 2, ..., n

∑
j

hij − bij ≤ 0, i , j = 1, 2, ..., n
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bij − (max
ij
θij)(1− yij) ≤ hij , i , j = 1, 2, ..., n

0 ≤ hij , i , j = 1, 2, ..., n

θij ≤ bij , i , j = 1, 2, ..., n

bij ≤ max
j
θij , i , j = 1, 2, ..., n

yij = 0, 1, i , j = 1, 2, ..., n

This is a mixed-integer linear programming problem. It can be
solved with the help of computer softwares. The bij that
corresponds to the yij with its value being 1 provides improved
performance

The mathematical tool in this section is thoroughly different from
those introduced in foregoing chapters. For a detailed discussion,
please refer to monographs addressing this topic
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12.5 A Design Example for Quasi-H∞ Control

In this section, an example is given to illustrate the design
procedure of the quasi-H∞ controller. It is shown that the
performance is significantly improved by employing the
optimization technique introduced in the last section

Example

Consider the model of a pilot scale ethanol and water distillation
column:

G(s) =

[
0.66e−6s

6.7s+1
−0.005e−s

9.1s+1
−34.7e−9.2s

8.1s+1
0.87(11.6s+1)e−s

(3.9s+1)(18.8s+1)

]
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Example (ctd.1)

In this system the outputs are

- Overhead ethanol mole fraction.

- Bottom composition temperature (◦C).

The inputs are

- Reflux flow rate (gpm).

- Reboiler stream pressure (psig).

The inverse of the plant is

G−1(s) =
adj[G(s)]

det[G(s)]

where
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Example (ctd.2)

adj[G(s)] =

[
0.87(11.6s+1)e−s

(3.9s+1)(18.8s+1)
0.005e−s

9.1s+1
34.7e−9.2s

8.1s+1
0.66e−6s

6.7s+1

]

det[G(s)] =

[
0.66 ∗ 0.87(11.6s + 1)

(6.7s + 1)(3.9s + 1)(18.8s + 1)
− 34.7 ∗ 0.005e−3.2s

(8.1s + 1)(9.1s + 1)

]
e−7s

G(s) is factorized into

G(s) = GD(s)GO(s)

The maximum predictions of both the first and the second columns
of G−1(s) are 6. According to Definition 1, GD(s) is given by

GD(s) =

[
e−6s 0

0 e−6s

]
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Example (ctd.3)

GO(s) = GD
−1(s)G(s) does not have any RHP zeros, which

implies that GN(s) = I and GMP(s) = GO(s). In light of (1), the
quasi-H∞ controller is

Qopt(s) =

[
0.87(11.6s+1)

(3.9s+1)(18.8s+1)
0.005
9.1s+1

34.7e−8.2s

8.1s+1
0.66e−5s

6.7s+1

]
0.66∗0.87(11.6s+1)

(6.7s+1)(3.9s+1)(18.8s+1) −
34.7∗0.005e−3.2s

(8.1s+1)(9.1s+1)

This exact controller is too complex. Model reduction techniques
are used here to simplify the design task

Suppose that the relative degree of the approximate denominator is
chosen as 2. The following result can be obtained by using fitting
techniques:
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Example (ctd.4)

0.66 ∗ 0.87(11.6s + 1)

(6.7s + 1)(3.9s + 1)(18.8s + 1)
− 34.7 ∗ 0.005e−3.2s

(8.1s + 1)(9.1s + 1)
≈ 0.4007

3s2 + 16s + 1

With the approximate denominator, we have

Qopt(s) =

[
0.87(11.6s+1)

(3.9s+1)(18.8s+1)
0.005
9.1s+1

34.7e−8.2s

8.1s+1
0.66e−5s

6.7s+1

]
3s2 + 16s + 1

0.4007

Since the plant is stable, the filter can be chosen as

J(s) =

[ 1
λ1s+1 0

0 1
λ2s+1

]
The suboptimal controller is
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Example (ctd.5)

Q(s) =

[
0.87(11.6s+1)

(3.9s+1)(18.8s+1)(λ1s+1)
0.005

(9.1s+1)(λ2s+1)
34.7e−8.2s

(8.1s+1)(λ1s+1)
0.66e−5s

(6.7s+1)(λ2s+1)

]
3s2 + 16s + 1

0.4007

If there is not any requirement on the closed-loop response, λ1 and
λ2 can be selected freely.

Suppose there are some design requirements on the closed-loop
response, for example, 10% overshoot for each channel. Using the
engineering tuning method, it is easy to obtain that λ1 = 3.2 and
λ2 = 4. The closed-loop responses are shown in Figure.

In the last section, an optimization design method was introduced
for improving the performance. Using the method, one gets
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Figure: Closed-loop response with λ1 = 3.2 and λ2 = 4-1
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Figure: Closed-loop response with λ1 = 3.2 and λ2 = 4-2
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Example (ctd.6)

Min
∑
i

∑
j

bij = 22.2,

b11 = 6, b12 = 6, b21 = 9.2, b22 = 1,

y11 = 1, y12 = 0, y21 = 0, y22 = 1

This implies that the closed-loop performance could be improved
by increasing θ12 in G (s) to 6 min while keeping other time delays.
In this case,

GD(s) =

[
e−6s 0

0 e−s

]
and the controller is
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Example (ctd.7)

Q(s) =

[
0.87(11.6s+1)

(3.9s+1)(18.8s+1)(λ1s+1)
0.005

(9.1s+1)(λ2s+1)
34.7e−8.2s

(8.1s+1)(λ1s+1)
0.66

(6.7s+1)(λ2s+1)

]
3s2 + 16s + 1

0.4007

For the sake of comparison, the same controller parameters as that
in the system with unmodified time delays are taken. It can be
seen from Figure that the response of the second output is
significantly improved
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Figure: Performance improvement by increasing the time delay-1
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Figure: Performance improvement by increasing the time delay-2
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12.6 Multivariable PID Controller Design

Open question: The PID controller is widely used in practice.
Design techniques of SISO PID controllers have been well
developed. However, the design of multivariable PID controllers
remains a subject of study, since the MIMO case is much more
intricate than the SISO case

Design idea in this section:
Section 12.2 introduced a simple design method for multivariable
controllers, of which one main feature is that the controller is
analytical

Once an analytical result is obtained, one can directly use the
design procedures in Section 5.5 and Section 5.6 to reduce every
element of the multivariable controller C(s) into a SISO PID
controller
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When the desired PID controllers have the same form (that is, all
controllers are in the form of PI, or all controllers are in the form of
PID), the design procedure can be expressed by matrix and vector
notations. As an example, the design procedure for Maclaurin PID
controllers is provided here

Consider the quasi-H∞ control. First, the plant is factorized as

G(s) = GD(s)GN(s)GMP(s)

The desired closed-loop transfer function matrix is chosen as

T(s) = GD(s)GN(s)J(s)

With the closed-loop transfer function matrix, the obtained unity
feedback loop controller can be expressed as

C(s) = GMP
−1(s)J(s)[I− GD(s)GN(s)J(s)]−1
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Section 12.6 Multivariable PID Controller Design

Rewrite the controller as

C(s) = s−1f(s)

where

f(s) = sGMP
−1(s)J(s)[I− GD(s)GN(s)J(s)]−1

Expand the controller in a Maclaurin series:

C(s) = s−1
[
f(0) + f ′(0)s + f ′′(0)s2/2! + f(3)(0)s3/3! + ...

]
The first three terms form a standard PID controller:

C(s) = KC + TIs
−1 + TDs

whose parameters are

KC = f ′(0),TI = f(0),TD = f ′′(0)/2
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To simplify the representation, let

N(s) = s−1[I− GD(s)GN(s)J(s)]J−1(s)

= s−1[J−1(s)− GD(s)GN(s)]

Then we have

f(s) = GMP
−1(s)N−1(s)

The values of f(s) and its derivatives at the origin are

f(0) = GMP
−1(0)N−1(0),

f ′(0) = [GMP
−1(0)]′N−1(0) + G−1MP(0)[N−1(0)]′

f ′′(0) = [GMP
−1(0)]′′N−1(0) +

2[GMP
−1(0)]′[N−1(0)]′ + GMP

−1(0)[N−1(0)]′′

where
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N(0) =
[
J−1(0)

]′ − [GN
−1(0)GD

−1(0)]′

[N(0)]′ = {[J−1(0)]′′ − [GN
−1(0)GD

−1(0)]′′}/2!

[N(0)]′′ = {[J−1(0)](3) − [GN
−1(0)GD

−1(0)](3)}/3![
N−1(0)

]′
= −N−1(0)[N(0)]′N−1(0)[

N−1(0)
]′′

= −[N−1(0)]′[N(0)]′N−1(0)−
N−1(0)[N(0)]′′N−1(0)−
N−1(0)[N(0)]′[N−1(0)]′[

G−1(0)
]′

= −G−1MP(0)[GMP(0)]′GMP
−1(0)[

G−1(0)
]′′

= −[GMP
−1(0)]′[GMP(0)]′GMP

−1(0)−
GMP

−1(0)[GMP(0)]′′GMP
−1(0)−

GMP
−1(0)[GMP(0)]′[GMP

−1(0)]′
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Example

Consider a binary distillation column for separating a mix of
methanol and water (the feed) into a bottom product (mostly
water) and a methanol distillate (Figure). Schematically, the
distillation process functions as follows:

Steam flows into the reboiler and vaporizes the bottom liquid.
This vapor is reinjected into the column and mixes with the
feed

Methanol, being more volatile than water, tends to
concentrate in the vapor moving upward. Meanwhile, water
tends to flow downward and accumulate as the bottom liquid

The vapor exiting at the top of the column is condensed by a
flow of cooling water. Part of this condensed vapor is
extracted as the distillate, and the rest of the condensate (the
reflux) is sent back to the column

Part of the bottom liquid is collected as bottom products
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Figure: Binary distillation column
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Example (ctd.1)

In this application, the objective is to control the amount of the
bottom and top methanol by manipulating the steam flow rate and
the reflux flow rate, respectively. Since a change in either steam
flow rate or reflux flow rate upsets both methanols, we have an
interacting system

The model of the distillation column is described by

G(s) =

[
12.8e−s

16.7s+1
−18.9e−3s

21s+1
6.6e−7s

10.9s+1
−19.4e−3s

14.4s+1

]

The inverse of the plant is

G−1(s) =
adj[G(s)]

det[G(s)]
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Example (ctd.2)

where

adj[G(s)] =

[
−19.4e−3s

14.4s+1
18.9e−3s

21s+1
−6.6e−7s

10.9s+1
12.8e−s

16.7s+1

]

det[G(s)] =

(
−248.3

240.5s2 + 31.1s + 1
− −124.7e−6s

228.9s2 + 31.9s + 1

)
e−4s

G(s) is factorized into

G(s) = GD(s)GO(s)

Since the largest predictions of the first and the second columns of
G−1(s) are 1 and 3 respectively, GD(s) is given by

GD(s) =

[
e−1s 0

0 e−3s

]
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Example (ctd.3)

GO(s) is MP, GN(s) = I. The desired closed-loop transfer function
matrix is chosen as

T(s) =


e−s

λ1s + 1
0

0
e−3s

λ2s + 1


Then

Q(s) =

[
−19.4

(14.4s+1)(λ1s+1)
18.9e−2s

(21s+1)(λ2s+1)
−6.6e−4s

(10.9s+1)(λ1s+1)
12.8

(16.7s+1)(λ2s+1)

]
124.7e−6s

228.9s2+31.9s+1
− 248.3

240.5s2+31.1s+1
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Example (ctd.4)

and the unity feedback loop controller is

C(s) =

[
−19.4

(14.4s+1)(λ1s+1−e−s)
18.9e−2s

(21s+1)(λ2s+1−e−3s)
−6.6e−4s

(10.9s+1)(λ1s+1−e−s)
12.8

(16.7s+1)(λ2s+1−e−3s)

]
124.7e−6s

228.9s2+31.9s+1
− 248.3

240.5s2+31.1s+1

This is a rigorously analytical result

Suppose a multivariable PI controller is desired. Take λ1 = 4.5 and
λ2 = 4. The controller parameters are

KC =

[
0.2833 −0.0411
0.0915 −0.1210

]
, TI =

[
0.0285 −0.0219
0.0097 −0.0148

]
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Example (ctd.4)

If there is not any constraint on the structure of PID controller,
one can choose the PID controller with best achievable
performance. Nevertheless, the resulting controller is unstable. To
overcome this problem, the first column of C(s) is chosen in the
form of the PI controller, while the second column is chosen in the
form of the PID controller. Take λ1 = 3.8 and λ2 = 3.5. The
multivariable PID controller is

C(s) =

[
0.3251s+0.0327

s −3.0901s2+0.8804s+0.0235
s(35.4901s+1)

1.0506s+0.1112
10s −8.6640s2+1.1570s+0.0159

s(64.3898s+1)

]

The closed-loop responses are shown in Figure. Because of the use
of rational approximations, the interaction among different
channels cannot be thoroughly decoupled in the systems with PI or
PID controllers

Zhang, W.D., CRC Press, 2011 (No.2 USU) Version 1.0 70/73



Section 12.6 Multivariable PID Controller Design

Figure: Closed-loop responses of multivariable PID controllers-1
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Figure: Closed-loop responses of multivariable PID controllers-2
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End of Chapter 12
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