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Figure 1.1
Components of an airplane.
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Figure 1.2
(a) Three-dimensional view of the Pathfinder airplane showing the wing in a non-lifting condition on 
the ground (http://www.nasa.gov/centers/dryden/images/content/107948main_pathfinder_drawing2.
jpg) and (b) flexed wing shape in flight (http://www.globalprofitsalert.com/wp-content/uploads/2010/08/
solar-powered-plane-pathfinder.jpg, http://www.modelaircraft.org).
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Figure 1.3
The outboard spoilers on the Boeing 737. (http://www.b737.org.uk/images/spoilers.jpg)

001x003.tif



Courtesy of CRC Press/Taylor & Francis Group

XCG - CG position

60° Delta

70

65

60

55

50

0.5 1.0 1.5 Mach2.0

% of aerodynamic chord

XAC

XAC

XCG

Without fuel transfer, XCG = 53.5%

With fuel transfer

Concorde

XAC - aerodynamic
           center location

Figure 1.4
A plot showing the variation of Xcg (axial location of centre of gravity) and Xac (axial location of aero-
dynamic centre) for the supersonic transport aircraft Concorde and also for a 60° delta wing (a wing 
with a triangular planform and semi-apex angle of 60°) for different values of Mach number. (Jean Rech 
and Clive S. Leyman. A Case Study by Aerospatiale and British Aerospace on the Concorde, AIAA 
Professional Study Series. http://www.dept.aoe.vt.edu/~mason/Mason_f/ConfigAeroSupersonicNotes.
pdf; http://flyawaysimulation.com/media/images1/images/concorde-nose.jpg) 
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Figure 1.5
Image showing various sweep angle settings on the F-111—from high-sweep for supersonic flight 
(leader) to mid-sweep for high subsonic flight (middle) to low-sweep for low subsonic flight (trailer). 
(www.thebaseleg.com) (http://www.thebaseleg.com/Aviation/Williamtown-2010-2/13914521_F8CH
zK/#!i=1021328031&k=vZ93Sv8)
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Figure 1.6
Body-fixed axes system attached to the centre of gravity (OB) for (a) a conventional airplane and (b) a 
launch vehicle.
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AD-1 3-view

Figure 1.7
A three-dimensional view of the NASA AD-1 oblique wing aircraft whose wing could be swivelled 
in flight about a central hinge. ( http://upload.wikimedia.org/wikipedia/commons/8/88/AD-1_3-View_
line_art.gif)
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Figure 1.8
Schematic diagram of a parafoil–payload system showing the body-fixed axes XPYPZP attached to the 
parafoil and the body-fixed axes XbYbZb attached to the payload. A third set of axes XCYCZC is placed at 
the connecting point C where the two bodies are linked.
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Figure 1.9
Sketch of an aircraft in space with XBYBZB axes fixed to its centre of gravity (CG) OB, velocity vector V 
at CG, and angular velocity vector ω about the CG, axes XEYEZE fixed to Earth, position vector R from 
origin (OE) of XEYEZE to aircraft CG (OB).
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Figure 1.10
Sketch of airplane axes, velocity vector and trajectories for some standard airplane motions: (a) straight 
and level flight, (b) vertical pull-up, (c) horizontal level turn and (d) roll about the velocity vector.
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Figure 1.11
Airplane flight in (a) head and in (b) tail wind conditions.
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Figure 1.12
Variation of drag coefficient of an airplane as a function of Mach number.
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Figure 1.13
Airlines flying westward may choose the ‘Great Circle Route’, which is geometrically the shortest, but 
when flying east they may fly along the Jet Stream, which provides a sustained tail wind, gaining time 
and saving fuel. (http://upload.wikimedia.org/wikipedia/commons/7/79/Greatcircle_Jetstream_routes.
svg) 
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Figure 1.14
Aerodynamic moment caused by aerodynamic force acting at the centre of pressure.
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Figure 1.15
Airplane in longitudinal climbing flight showing Earth and body axes, V and ω vectors, angles α, γ and 
θ.
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Figure 1.16
Sketch of an aircraft in landing approach showing the axes and various angles.
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Figure 1.17
Free body diagram of an airplane showing all the forces and moments acting on it.
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Figure 1.18
Suggestive time history of airplane motion with pitching motion (at quicker timescale) superimposed 
over heaving motion (slower timescale).
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Figure 1.19
Standard atmospheric properties in normal atmospheric flight altitude range.
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Figure 1.20
Variation of Cf as a function of the Reynolds number for a flat plate. (Adapted from Fundamentals of 
Aerodynamics by John D. Anderson, Jr., Fourth Edition, McGraw Hill Publication, 2007, pp. 77).

001x020.eps



Courtesy of CRC Press/Taylor & Francis Group

2.5

2 Cm
CL

CD

1.5

1

0.5

0

–0.5

–1

–1.5
–10 0 10 20 30 40 50 60 70

Angle of attack, α (in deg)
80 90

Figure 1.21
Plot of drag, lift and pitching moment coefficients as functions of angle of attack for the F-18/HARV 
airplane.

001x021.eps



Courtesy of CRC Press/Taylor & Francis Group

Angle of attack, α (in deg)
–5

–0.5

0.5

1

1.5

2

0

0

5 10

Cm

CL

15 20

Co
effi

ci
en

ts
 C

L a
nd

 C
m

Figure 1.22
Plot of variation of CL, Cm with angle of attack α for airplane X.
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Figure 1.23
Typical variation of airplane CL with Mach number.
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Figure 1.24
Various forces and moments acting on a wing–body combination in level flight.
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Figure 1.25
An airplane with positively cambered wing at zero lift showing the sense of MAC

wb .
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Figure 1.26
Trim condition with moment due to wing lift Lwb(Xcg − Xac) exactly balanced by Mac

wb at the CG.
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Figure 1.27
Leading edge flaps and trailing edge flaps (also called elevons) on a wing.
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Figure 1.28
Elevons on the Concorde—picture shows inner, middle and outer set of elevons labelled. 
(heritageconcorde.com) (http://heritageconcorde.com/wp-content/uploads/2012/02/elevon-and-rud-
ders-USE-FOR-WEBSITE1.jpg)
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Figure 1.29
Schematic representation of an airfoil with increased camber due to trailing edge flap deflection.
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Figure 1.30
An airplane with engine mounted on the vertical tail showing moment due to thrust vertically displaced 
above the CG line.
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Figure 1.31
Seaplane with engine mounted high above the CG line. (http://www.homebuiltairplanes.com;  
http://www.homebuiltairplanes.com/forums/attachments/aircraft-design-aerodynamics-new-
technology/16078d1329429117-why-seaplanes-doesn-t-fly-ground-effect-long-range-20080913172712_
sea_plane.jpg)

001x031.tif


