MATLAB SOLUTIONS
Problems Listed in Table E.1 (page 950 in text)….……1-84
[image: image44.png]



E.1                                                                                                                                                                                                                                                    
Table E.1      MATLAB Solution Contents  (repeated from Appendix E)

Example 1.1     Member Forces in a Pin-Connected Frame     17                                                                               Example 1.6     Strains in a Plate     1.9                                                                                                                                        Example 2.3     Volume Change of a Cylinder under Biaxial Loads     2.3                                                                                    Example 2.4     Material Resilience of a Tensile Bar     55                                                                                              Example 3.2     Design of Monoplane Wing Rod     76                                                                                                               Example 3.6     Maximum Stresses in a Simply Supported Beam     92                                                                                Example 4.11   Impact Loading on a Rod      174                                                                                                                               Example 4.14   Impact Loading on a Shaft     178                                                                                                                         Example 5.19   Stress in a Strut of a Clamping Assembly     5.3                                                                                                 Example 5.21   Steel Connecting Rod Buckling Analysis     5.6                                                                                              Example 6.2     Design of a Wide Plate with a Central Crack     271                                                                                          Example 6.4     Failure of a Rod under Combined Torsion and Axial Loading     276                                                 Example 7.1     Endurance Limit of a Torsion Bar     315                                                                                                          Example 7.7     Fatigue Life of an Instrument Panel with a Crack     332                                                                                                                          






MATLAB SOLUTIONS
(Problems Listed in Table E.1, page 950 in text)                                                           
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Ansel C. Ugural and Youngjin Chung


% EXAMPLE 1.1     Member Forces in a Pin-Connected Frame

% The assembly shown in Figure 1.3a, which carries a load of 30 kN, consists of two beams ABCD % and CEF, and one bar BE, connected by pins; it is supported by a pin at A and a cable DG. The % dimensions are in meters.

% Find:

% (a) The components of the forces acting on each member.

% (b) The axial force, shear force, and moment acting on the cross section at point G.

% Assumptions: Friction forces in the pin joints will be omitted. All forces are coplanar and two % dimensional.

% Solution: There are two components R_Ax and R_Ay of the reaction at A and the force T         % exerted by the cable at D. Therefore, we can compute the reactions by considering the free   % body of the entire frame (Figure 1.3a):

% Unknowns Forces: {F}={T, R_Ax, R_Ay, F_BE, F_Cx, F_Cy};

%
∑M_A=30(5)-Tsin30(8)=0

%

>
4 T+0 R_Ax+0 R_Ay+0 F_BE+0 F_Cx+0 F_Cy=150

%
∑F_x=R_Ax-Tsin30=0 

%

>
-0.5 T+1 R_Ax+0 R_Ay+0 F_BE+0 F_Cx+0 F_Cy=0

%
∑F_y=R_Ay-Tcos30=0 

%

>
-0.866 T+0 R_Ax+1 R_Ay+0 F_BE+0 F_Cx+0 F_Cy=30

% (a) The frame is now dismembered, since only two members are connected at each joint,       % equal and opposite components or resultants are shown on each member at each joint           % (Figure 1.3b). We note that BE is a two-force member with relative dimensions are shown by % a small triangle. Observe that, the slope of the force F_BE is 2/3 and we can write the                  % proportionalities,

%
F_Bx/3=F_By/2=F_BE/sqrt(13)

% Hence the computational convenience, the force F_BE may be resolved into the x and y              % components:

%
F_Bx=3F_BE/sqrt(13)
F_By=2F_BE/sqrt(13)

% Now, we write the following equilibrium conditions for the member CEF,

%
∑M_C=30(5)-(2/sqrt(13) )F_BE (3)=0

%

>
0 T+1 R_Ax+0 R_Ay+1.664 F_BE+0 F_Cx+0 F_Cy=150

%
∑M_E=30(2)-F_Cy=0

%

>
0 T+0 R_Ax+0 R_Ay+0 F_BE+0 F_Cx+3 F_Cy=60

%
∑F_x=(3/sqrt(13)F_BE-F_Cx=0

%

>
0 T+0 R_Ax+0 R_Ay+0.832 F_BE-1 F_Cx+0 F_Cy=0

% Given Forces: {R}={150, 0, 30, 150, 60, 0};

% Put Stiffness matrix [K];

           K=[4 0 0 0 0 0; -0.5 1 0 0 0 0; -0.866 0 1 0 0 0; 0 0 0 1.664 0 0; 0 0 0 0 0 3; 0 0 0 0.832 -1 0]

% Get inverse matrix


iK=inv(K);

% Put Given Force GF


GF=[150 0 30 150 60 0];

% Get GF transpose matrix


tGF=transpose(GF);

% Calculate {F}=[iK]*{tGF}


F=iK*tGF

% Member ABCD: All internal forces have been found. To check the results, using equations of  % statics we verify that the beam ABCD is in equilibrium.

% Comment: The positive values obtained means that the directions shown for the force            % components are correct.

% (b) Cut member CEF at point G. Choosing the free body of segment CG, we have

    
F_Cx=F(5);  F_Cy=F(6);


M_G=F_Cy*2


F_G=F_Cx


V_G=F_Cy

% Comment: The internal forces at G are equivalent to a couple, an axial force, and a shear.

-------------------------------------------------------------------------------------------------------------------------------

>>  Results - Example 1.1:
K =

    4.0000         0         0         0         0         0

   -0.5000    1.0000         0         0         0         0

   -0.8660         0    1.0000         0         0         0

         0         0         0    1.6640         0         0

         0         0         0    0.8320   -1.0000         0

         0         0         0         0         0    3.0000

F =

   37.5000

   18.7500

   62.4750

   90.1442

   75.0000

   20.0000

M_G =

    40

F_G =

   75.0000

V_G =

    20

Results in textbook notation with units:
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% EXAMPLE 1.6     Strains in a Plate

% Given: A thin triangular plate ABC is uniformly deformed in to a shape ABC’, as depicted by    % the dashed lines in Fig. 1.12.

% Find:

%
(a) The normal strain along the centerline OC.

%
(b) The normal strain along the edge AC.

%
(c) The shear strain between the edges AC and BC.

% Assumptions: The edge AB is built-in to a rigid frame. The deformed edges AC’= BC’ are           % straight lines.

% Solutions: We have   and   (Fig. 1.12).


L_OC=1; L_AC=1.41421; L_BC=1.41421;
 %consider “a=1” for calculation
% (a) Normal Strain along OC. Since the contraction in length OC is  , Eq.(1.20)gives


del_a=-0.0015;


epsilon_OC=-0.0015

% (b) Normal Strain along AC and BC. The lengths of the deformed edges are equal to  


L_BCp=sqrt((1^2)+(1-0.0015)^2))


epsilon_AC=(1.41315-1.41421)/1.41421


epsilon_BC=epsilon_AC

% (c) Shear Strain between AC and BC. After deformation, angle ACB is therefore


AC_pB=2*atand(1/(1-0.0015))
% So, the change in the right angle


Change_Angle=90.-AC_pB;

% The associated shear strain (in radian)


gamma=Change_Angle*(pi/180)

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 1.6:
epsilon_OC =

   -0.0015

L_BCp =

    1.4132

epsilon_AC =

 -7.4954e-004

epsilon_BC =

 -7.4954e-004

AC_pB =

   90.0860

gamma =

   -0.0015

Results in textbook notation with units:
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% EXAMPLE 2.3     Volume Change of a Cylinder under Biaxial Loads

% A solid brass cylinder of diameter d and length L (Fig. 2.10) is under axial and radial pressures % 30 and 12 ksi, respectively.


sigma_x=-30*1000;
sigma_y=-12*1000;
sigma_z=-12*1000;

% Find, the change in:

% (a) The length delta_L  and diameter  delta_d.

% (b) The volume of the cylinder  delta_V.

% Given:

%
d=5 in.,

L=8 in.,
and
 E=15*10^6  psi,
nu=0.34 (from Table B.1)


d=5;
L=8;
E=15*1000000;

nu=0.34;


% Assumption:
 Cylinder deforms uniformly.

% Solution:

%
Applying Eq.(2.8), associated strains are as follows:


epsilon_x=(1/E)*(sigma_x-nu*(sigma_y+sigma_z))


epsilon_y=(1/E)*(sigma_y-nu*(sigma_x+sigma_z))


epsilon_z=epsilon_y


epsilon=epsilon_z

% (a) Changes in length and diameter. Decrease in length and increase in diameter are,               % respectively,


delta_L=epsilon_x*L


delta_d=epsilon*d

% (b) Volume change. Using Eq. (2.12), we have


e=epsilon_x+2*epsilon

% It follows, from Eq.(2.10), that


V_0=pi*((d/2)^2)*L;


delta_V=e*V_0

% Comment: A negative sign means a decrease in the volume of the cylinder.

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 2.3:
epsilon_x =

   -0.0015

epsilon_y =

  1.5200e-004

epsilon_z =

  1.5200e-004

epsilon =

  1.5200e-004

delta_L =

   -0.0116

delta_d =

  7.6000e-004

e =

   -0.0012

delta_V =

   -0.1810

Results in textbook notation with units:
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% EXAMPLE 2.4     Material Resilience on an Axially Loaded Rod
% During the manufacturing process, a prismatic round steel rod must acquire an elastic strain  % energy of  U_app=200 in∙lb (Figure 2.14). Determine the required yield strength S_y for a factor % of safety of n=2.5 with respect to permanent deformation.

% Given: E=30×10^6 psi, diameter d=7/8 in., length L=4 ft.


E=30*(10^6); 
d=7/8.; 

L=4*12.; 
U_app=200.; 
n=2.5;

% Solution: The volume of the member is


A=(pi/4)*(d^2); 


V=A*L

% The Rod should be designed for a strain energy:


U=n*U_app

% The strain energy density is therefore 500/28.9=17.3 lb/in.^3 


U_div_V=U/V 

% Solving


S_y=sqrt(U_div_V*2*E)

--------------------------------------------------------------------------------------------------------------------------------

>>  Results - Example 2.4:
V =

   28.8634

U =

   500

U_div_V =

   17.3230

S_y =

  3.2239e+004

Results in textbook notation with units:
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% EXAMPLE 3.2     Design of a Monoplane Wing Rod

% The wing of monoplane is approximated by a pin-connected structure of beam AD and bar BC, % as depicted in Figure 3.4a. Determine

% (a) The shear stress in the pin at a hinge C.

% (b) The diameter of the rod BC.

% Given: The pin at C has a diameter of 15 mm and is in double shear.


d=0.015;

% Assumptions: Friction in pin joints is omitted. The air load is distributed uniformly along the   % span of the wing. Only rod BC is under tension. A round 2014-T6 aluminum alloy bar (see        % Table B.1) is used for rod BC with an allowable axial stress of 210 MPa.


sigma_BC=210*10^6;

% Solution: Referring to the free body diagram of the wing ACD (Figure 3.4b),  ∑M_A=0,


F_BC=36000*1.8*sqrt(5)/2

% where F_BC (1/sqrt(5) is the vertical component of the axial force in member BC.

% (a) Through the use of Eq. (3.4),


A=pi*(d*d/4);


tau_avg=F_BC/(2*A)

% (b) Applying Eq. (3.1), we have F_BC and sigma_BC and solving


A_BC=F_BC/sigma_BC*1000000      %Multiply 1000000 to make unit "mm". Hence,


d=sqrt(A_BC*4./pi)

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 3.2:
F_BC =

  7.2449e+004

tau_avg =

  2.0499e+008

A_BC =

  344.9933

d =

   20.9585

Results in textbook notation with units:
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% EXAMPLE 3.6     Maximum Stresses in a Simply Supported Beam
% A simple beam of T-shaped cross section is loaded as shown in Figure 3.15a. Determine

% (a) The maximum shear stress.

% (b) The shear flow q_j and the shear stress tau_j in the joint between the flange and the web.

% (c) The maximum bending stress.
% Given: P=4 kN and L=3 m


P=4*1000;
L=3;

% Assumptions: All forces are coplanar and two dimensional.
% Solution: The distance y_bar from Z axis to the centroid is determined as follows (Figure         % 3.15b):


b_1=60;
h_1=20;
b_2=20;
h_2=60;


A_1=b_1*h_1;
y_1_bar=70;
A_2=b_2*h_2;
y_2_bar=30;


d_y1=20;
d_y2=20;


y_bar=(A_1*y_1_bar+ A_2*y_2_bar)/(A_1+A_2)
% The moment of inertia I about the neutral axis is found using the parallel axis theorem:


I=b_1*h_1^3/12+A_1*d_y1^2+ b_2*h_2^3/12+A_2*d_y2^2


I=I*10^-12;
% The shear and moment diagram (Figures 3.15c and 3.15d) are drawn using the method of      % sections.

% (a) The maximum shearing stress in the beam occurs at the neutral axis on the cross section  % supporting the largest shear force V. Hence,


Q_NA=50*20*25

% Since the shear force equals 2 kN in all cross sections of the beam (Figure 3.12c), we have


V=2*1000;
V_max=V;


tau_max=V_max*(Q_NA*10^-9)/(I*(b_2*10^-3))
% (b) The first moment of the area of the flange about the neutral axis is


Q_f=20*60*20

% Applying Eqs. (3.23) and (3.20),


q_j=V*(Q_f*10^-9)/I


tau_j= (V*(Q_f*10^-9)/I)/(b_2*10^-3)
% (c) The largest moment occurs at midspan, as shown in Figure 3.15d. Therefore, from Eq.       % (3.17), we obtain


M=(P/2)*(L/2);

c=0.05;

sigma_max=M*c/I

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 3.6:
y_bar =
    50
I =
     1360000

Q_NA =
       25000
tau_max =
  1.8382e+006
Q_f =
       24000
q_j =
  3.5294e+004
tau_j =
  1.7647e+006
sigma_max =
  1.1029e+008
Results in textbook notation with units:
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% EXAMPLE 4.11     Impact Loading on a Rod

% The prismatic rod depicted in Figure 4.17 has length L, diameter d, and modulus of elasticity E. % A rubber compression washer of stiffness k and thickness t is installed at the end of the rod.

% (a) Calculate the maximum stress in the rod caused by a sliding collar of weight W that drops % from a height h onto washer

% (b) Redo part a, with the washer removed

% Given: L=5 ft,  h=3 ft,  d=1/2 in.,  t=1/4 in.,  E=30*10^6 psi,  k=25 lb/in.,  W=8 lb

    
L=5*12;  h=3*12;  d=1/2;  t=1/4;  E=30*10^6;  k=25;  W=8;

% Solution: The cross-sectional area of the rod A=pi*(1/2)^2/4=pi/16 in.^2

    
A=pi*d^2/4;

% (a) For the rod with the washer, the static deflection is 

    
delta_WL_div_AE=W*L/(A*E)

    
delta_W_div_k=W/k

   
delta_st=delta_WL_div_AE+delta_W_div_k

% The maximum dynamic stress, from Eqs.(4.33) and (4.32)

    
K=1+sqrt(1+(2*h/delta_W_div_k));

    
sigma_max=W*K/A

% (b) In the absence of the washer, this equation results in

K=1+sqrt(1+(2*(h+t)/delta_WL_div_AE));


sigma_max=W*K/A

% Comments: The difference in stress for the preceding two solutions is large. This suggests the % need for flexible system for withstanding impact loads. Interestingly, bolts subjected to          % dynamic loads, such as those used to attach the ends to the tube in pneumatic cylinders, are % often designed with long grips (see Section 15.9) to take advantage of the more favorable      % stress conditions.

------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 4.11:
delta_WL_div_AE =

  8.1487e-005

delta_W_div_k =

    0.3200

delta_st =

    0.3201

sigma_max =

  653.2553

sigma_max =

  3.8472e+004

Results in textbook notation with units:
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% EXAMPLE 4.14     Impact Loading on a Shaft

% A shaft of diameter d and length L has a flywheel (radius of gyration r, weight W, modulus of % rigidity G, yield strength in shear S_ys) at one end and runs at a speed of n, If the shaft is           % instantly supported at the other end, determine

% (a) The maximum shaft angle of twist.

% (b) The maximum shear stress.

% Given: d=3 in.,
L=2.5 ft,
W=120 lb, 
r=10 in.,
n=150 rpm


d=3;      L=2.5;
 W=120;  r=10; 
n=150; 
g=386;

% Assumption: The shaft is made of ASTM-A242 steel. So, by Table B.1, G=11.5×10^6 psi and     % S_ys=30 ksi


G=11.5*10^6;  S_ys=30;

% The area properties of the shaft are


A=pi*(d^2)/4


J=pi*d^4/32

% The angular velocity equals


omega=n*(2*pi/60)

% (a) The kinetic energy of the flywheel must be absorbed by the shaft. So, substituting Eq.        % (4.43) into Eq.(4.41), we have


E_k=W*omega*omega*r*r/(2*g)

% From Eq.(4.39a),


phi_max=sqrt(2*E_k*L*12/(G*J))*180/pi

% (b) Through the use of Eq.(4.40),


tau_max=2*sqrt(E_k*G/(A*L*12))

% Comment: The stress is within the elastic range, 28.84 < 30, and hence assumption 2 of           % Section 4.7 is satisfied.

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 4.14:
A =

    7.0686

J =

    7.9522

omega =

   15.7080

E_k =

  3.8353e+003

phi_max =

    2.8741

tau_max =

  2.8844e+004

Results in textbook notation with units:
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% EXAMPLE 5.19    Stress in a Strut of a Clamping Assembly

% A piece of work in process of manufacture is attached to a cutting machine table by a bolt      % tightened to a tension of T (Fig. 5.25a). The clamp contact is offset from a centroidal axis of   % the strut AB by a distance e as shown in Fig.5.25b. The strut is made of a structural ASTM 36  % steel of diameter d and length L.

% Given: The numerical values are

% 
d=30 mm, e=3.5 mm, L=125 mm, T=2P=7 kN, E=200 GPa (by Table B.1)

 
d=30;  e=3.5;  L=125;  T=7*1000;  E=200*10^9;  L_e=L; P=T/2;

% Find: The largest stress in the strut, applying:

% (a) Equation (5.76) for a short compression bar.

% (b) The secant formula.

% Assumption: The strut is taken as a pin connected at both ends, and hence L_e=L  .

% Solution: The cross sectional area properties of the strut equal


c=d/2


A=pi*d*d/4


I=pi*(d^4)/64


r=sqrt(I/A)


L_e_div_r=L_e/r

% Substitution of the given data leads to


P_div_A=P/A


ec_div_rr=e*c/(r*r)

% (a) Short-Column Formula. Insertion of the forgoing values into Eq.(5.76) results in


sigma_max=(P/A)*(1+e*c/(r*r))

% (b) Secant formula. Introducing the data into Eq.(5.74), we obtain


sigma_max=(P/A)*(1+ e*c/(r*r)*sec((L_e/(2*r))*sqrt(P/(A*E))))

% Comment: The results indicate that for this short column, the effect of the lateral deflection  % on stress can be omitted.

--------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 5.19:
c =

    15

A =

  706.8583

I =

  3.9761e+004

r =

    7.5000

L_e_div_r =

   16.6667

P_div_A =

    4.9515

ec_div_rr =

    0.9333

sigma_max =

    9.5729

sigma_max =

    9.5729

Results in textbook notation with units:
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% EXAMPLE 5.21     Steel Connecting Rod Buckling Analysis

% A pin-ended steel rod with a rectangular area of b×h is subjected to a centric compression     % load P as illustrated in Fig. 5.26.

% Given: b=30 mm,
h=50 mm,
E=200 GPa,
P=60 kN,
S_y=250 MPa


b=30;
h=50;
E=200*10^9;
P=60*1000;
S_y=250*10^6;

% Find: Through the us of AISC formulas, compute:

% (a) The permissible stress for the rod length of L=1.2 m.


L=1.2*1000;

% (b) The maximum length L_max for which the rod can safely support the loading.

% Assumptions: The pinned ends are designed to create an effective length of Le=L. Friction in  % the joints is disregarded.

% Solution: The cross-sectional area properties of the rod are


A=b*h


I_min=h*(b^3)/12


r=sqrt(I_min/A)


r_min=r;

% The limiting value of the slenderness ratio C_c, from Eq. (5.78a), is equal to


C_c=sqrt(2*pi*pi*E/S_y)

% (a) Allowable Stress. For the 1.2 m rod column, Le/r=1200/8.66 > Cc, and Eq. (5.77b) applies. % Therefore,

    
L_e=L;


sigma_all=pi*pi*E/(1.92*((L_e/r)^2))

% Comment: The foregoing stress is much lower than specified material strength; rod will not   % yield.

% (b) Largest Column Length. When the 60 kN load is to be safely carried, the required value of % the allowable stress equals

    
P=60*1000; A=1.5/1000;

    
sigma_all=P/A

% Assuming L_e/r > C_c, Eq. (5.77b) leads to


L_max_div_r=sqrt(pi*pi*E/(1.92*sigma_all))

% Inasmuch as L_max/r > C_c, our assumption was correct. It follows that


L_max =r*L_max_div_r

% Comment: Should the length of this connecting rod be more than 1.388 m, it would buckle.

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 5.21:
A =

        1500

I_min =

      112500

r =

    8.6603

C_c =

  125.6637

sigma_all =

  5.3546e+007

sigma_all =

    40000000

L_max_div_r =

  160.3187

L_max =

  1.3884e+003

Results in textbook notation with units:
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% EXAMPLE 6.2     Design of a Wide Plate with a Central Crack

% A large plate of width 2w carries a uniformly distributed tensile force P in a longitudinal          % direction with a safety factor of n. The plate has a central transverse crack that is 2a long.       % Calculate thickness t required.

% (a) To resist yielding.

% (b) To prevent sudden fracture.

% Given: w=60 mm, P=160 kN, n=2.5, a=9 mm


w=60;

P=160*1000;

n=2.5;

a=9;

% Design Decision: The plate is made of Ti-6A1-6V alloy.

% Solution: By Table 6.2, K_c=66*sqrt(1000) MPa sqrt(mm), S_y=1149 MPa


K_c=66*sqrt(1000);
S_y=1149;

% for the titanium alloy.

%(a) The allowable tensile stress based on the net area is


t=P*n/(2*(w-a)*S_y)

% (b) By Case A of Table 6.1,


a_div_w=9/60


lamda=1.02

% Through the use of Eq. (6.3) with n=2.5, the stress at fracture is


sigma=K_c/(lamda*n*sqrt(pi*9))

% Since this stress is smaller than the yield strength, the fracture governs the design;


sigma_all=sigma;
% Therefore,


t_red=P/(2*w*sigma_all)

% Comment: Use the thickness of 8.7 mm. Both values of a and t fulfill Table 6.2.

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 6.2:
t =
    3.4130
a_div_w =
    0.1500
lamda =
    1.0200
sigma =
  153.9244
t_red =
    8.6623
Results in textbook notation with units:
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% EXAMPLE 6.4     Failure of a Rod under Combined Torsion and Axial Loading

% A circular rod, constructed of a ductile material of tensile yield strength S_y, is subjected to a  % torque T. Determine the axial tensile force P that can be applied simultaneously to the rod     % (Figure 6.5).

% Given: T=500*pi  N∙m,
D=50 mm, 
factor of safety n=1.2


T=500*pi;
D=0.05;

n=1.2;

% Design Decisions: The rod is made of steel of S_y=300 MPa. Use the maximum shear stress    % failure criterion.


S_y=300*10^6;

% Solution: For the situation described, the critical stresses occur on the elements at the surface % of the shaft. Based on the maximum shear stress theory from Eq.(6.11),


tau_xy=16*T/(pi*D^3);


sigma_x=sqrt(power(S_y/n, 2)-4*power(tau_xy, 2))


P=sigma_x*pi*D^2/4

% Comment: This is the maximum force that can be applied without causing permanent             % deformation.

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 6.4:
sigma_x =

  2.1475e+008

P =

  4.2165e+005

Results in textbook notation with units:
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% EXAMPLE 7.1     Endurance Limit of a Torsion Bar
% A round torsion bar machined from steel is under reversed torsional loading. Because of the  % design of the ends, a fatigue stress concentration factor K_f exists. Estimate the modified       % endurance limit.

% Given: The diameter of the bar d=1+5/8 in. and K_f=1.2. The operating temperature is 500o C  % maximum.


d=1+5/8;
K_f=1.2;

% Assumption: Reliability is 98%.

% Design Decision: The bar is made of AISI 1050 cold-drawn steel.

% Solution: From Table B.3, we find ultimate strength in tension as S_u=100 ksi. Then applying Eq. % (7.4), the endurance limit of the test specimen is


S_u=100;


Sp_es=0.29*S_u

% By Eq. (7.7) and Table 7.2, the surface finish factor is


A=2.7; 
b=-0.265;


C_f=A*(S_u^b)

% The reliability factor corresponding to 98% is


C_r=0.84; 
% Table(7.3). Using Eq. (7.9), the size factor 


C_s=0.85; 
% Applying Eq. (7.11)


C_t=1-0.0058*(500-450)

% Hence, the endurance limit for design is found to be


S_es=C_f*C_r*C_s*C_t*(1/K_f)*Sp_es




% (b)

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 7.1:
Sp_es =

   29.0000

C_f =

    0.7968

C_t =

    0.7100

S_es =

    9.7620

Results in textbook notation with units:
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% EXAMPLE 7.7     Fatigue Life of Instrument Panel with a Crack

% A long plate of an instrument is of width 2w and thickness t. The panel is subjected to an axial % tensile load that varies from P_min to P_max with a complete cycle every 15 seconds. Before % loading on inspection a central transverse crack of length 2a is detected on the plate. Estimate % the expected life.

% Given: a=0.3 in.,
t=0.8 in., 
w=2 in., 
P_max=2P_min=144 kips


a=0.3;

t=0.8; 

w=2; 
P_max=144; 
P_min=72;
period=15;

% Assumption: The plate is made of an AISI 4340 tempered steel.

% Solution: See Table 7.5, 6.2, and 6.1.

% The material and geometric properties of panel are

% A=3.6×10^-10,
n=3, 
K_c =53.7 ksi  ,
S_y=218 ksi,


A=3.6*(10^-10);
n=3;
K_c=53.7;
S_y=218;

%  lamda=1.02,
for a/w=0.15 (Case A of Table 6.1)


lamda=1.02;
a_div_w=0.15;

% Note the values of a and t satisfy Table 6.2. The largest and smallest normal stresses are


sigma_max=P_max/(2*w*t)


sigma_min=P_min/(2*w*t)

% The cyclical stress range is then,


del_sigma=sigma_max-sigma_min;

%The final crack length at fracture, from Eq.(7.39) is found to be


a_f=(1/pi)*power((K_c/(lamda*sigma_max)), 2)

% Substituting the numerical values, Eq. (7.41) results in


N=(power(a_f, (1-n/2))-power(a, (1-n/2)))/(A*(1-n/2)*power((1.77*lamda*del_sigma), n))

% With a period of 15 s, approximate fatigue life L is


L=N*period/(60*60)
-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 7.7:
sigma_max =

    45

sigma_min =

   22.5000

a_f =

    0.4357

N =

  2.5755e+004

L =

  107.3111

Results in textbook notation with units:
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% EXAMPLE 8.2     Maximum Contact Pressure between a Cylindrical Rod and a Beam

% A concentrated load F at the center of a narrow, deep beam is applied through a rod of           % diameter d laid across the beam with of width L. Determine

% (a) The contact area between rod and beam surface.

% (b) The maximum contact stress.

% (c) The maximum value of the surface shear stress.

% Given: F=4 kN, 
d=12 mm,
L=125 mm


F=4*1000;
d=12;
L=125;

% Assumptions: Both the beam and the rod are made of steel having E=200 GPa and nu=0.3.


E=200*10^9;
nu=0.3;

% Solution: We use the equations on the third column of Case A in Table 8.4.

% (a) Since E_1=E_2=E or delta=2/E, the half-width of contact area is


delta=2/E;
r_1=d/2;


a=1.076*sqrt((F/L)*r_1*delta)*1000

% The rectangular contact area equals


T_rec_c_area=2*a*L

% (b) The maximum contact pressure is therefore


p_o=(2/pi)*(F/(a*L))

% (c) Observe from Fig. 8.9b that the largest value of the shear stress is at approximately            % z=0.75a for which


tau_yz_max=0.3*p_o

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 8.2:
a =

    0.0471

T_rec_c_area =

   11.7870

p_o =

  432.0830

tau_yz_max =

  129.6249

Results in textbook notation with units:
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% EXAMPLE 8.3     Ball Bearing Load Capacity
% A single-row ball bearing supports a radial load F as shown in Figure 8.11a. Calculate

% (a) The maximum pressure at the contact point between the outer race and ball.

% (b) The factor of safety, if the ultimate strength is the maximum usable stress.

% Given: F=1.2 kN, E=200 GPa, nu=0.3, and S_u=1900 MPa. Ball diameter is 12 mm; the radius of % the groove, 6.2 mm; and the diameter of the outer race is 80 mm.


F=1.2*1000; 
E=200*10^9; 
nu=0.3; 
S_u=1900*10^6; 
d=12;


r_1=0.006; 
rp_1=0.006; 
r_2=-0.0062; 
rp_2=-0.04;

% Assumptions: The basic assumptions is listed in Section 8.6 apply. The outer loading is static.

% Solution: See Figure 8.11a and Table 8.5.

% For the situation described r_1=rp_1=0.006 m, r_2=-0.0062 m, and rp_2=-0.04 m.

% (a) Substituting the given data into Eq. (8.8) and (8.10), we have

    
m=4/((1/r_1)+(1/rp_1)+(1/r_2)+(1/rp_2))

    
n=4*E/(3*(1-nu*nu))

    
A=2/m

    
theta=45;

    
B=(1/2)*sqrt(((1/r_1)-(1/rp_1))*((1/r_1)-(1/rp_1))+((1/r_2)-(1/rp_2))*((1/r_2)-(1/rp_2))+2*(((1/r_1)-(1/rp_1))*((1/r_2)-(1/rp_2)))*cos(2*theta))

% Using Eq.(8.9),


alpha=acosd(B/A)

% corresponding to this value of alpha, interpolating in Table 8.5, we obtain c_a=3.5623 and      % c_b=0.4522. The samiaxes of the ellipsoidal contact area are found by using Eq. (8.7):


c_a=3.5623; c_b=0.4255;


a=c_a*power((F*m/n), 1/3)


b=c_b*power((F*m/n), 1/3)

% The maximum contact pressure is then


p_o=1.5*F/(pi*a*b)

% (b) Since contact stresses are not linearly related to load F, the safety factor is defined by Eq. % (1.1)

%   n=F_u/F                                                   





(a)

% in which F_u is the ultimate loading. The maximum principal stress theory of failure gives

%
S_u=1.5*F_u/(pi*a*b);

% This may be written as from Eq. (8.11)

%   S_u=1.5*power(F_u,1/3)/(pi*c_a*c_b*power((m/n), 2/3));     

 (8.11)


F_u=power((S_u/1.5)*(pi*c_a*c_b*power((m/n), 2/3)), 3 )

% Equation (a) gives then


n=F_u/F

% Comments: In this example, the magnitude of the contact stress obtained is quite large in      % comparison with the values of the stress usually found in direct tension, bending, and torsion. % In all contact problems, three-dimensional compressive stresses occur at the point, and hence % a material is capable of resisting higher stress level.

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 8.3:
m =

    0.0272

n =

  2.9304e+011

A =

   73.5215

B =

   68.1452

alpha =

   22.0474

a =

    0.0017

b =

  2.0473e-004

p_o =

  1.6327e+009

F_u =

  1.8911e+003

n =

    1.5759

Results in textbook notation with units:
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% EXAMPLE 9.3     Shaft Design for Repeated Torsion and Bending

% Power is transmitted from a motor through a gear at E to pulleys at D and C of a revolving      % solid shaft AB with ground surface. Figure 9.5a shows corresponding load diagram of the        % shaft. The shaft is mounted on bearings at the ends A and B. Determine the required diameter % of the shaft by employing  the maximum energy of distortion theory of failure incorporating  % the Soderberg  Fatigue relation.

% Given: The shaft is made of with an ultimate strength of 810 MPa and a yield strength of 605 % MPa. Torque fluctuate 10% each way from the mean value. The fatigue stress-concentration % factor for bending and torsion is equal to 1.4. The operating temperature is 500o C maximum.


S_u=810; 
K_f=1.4; 
T=500;

% Design Assumptions: Bearing act simple supports. A factor of safety of n=2 is used. The           % survival rate is taken to be 50%.


n=2;

% Solution: The reactions at A and B, as obtained from the equations of statics, are noted in      % Figure 9.5a. The determination of resultant of bending of (M_y^2+M_z^2)^(1/2) is facilitated   % by using the moment diagrams (Figures 9.5b and 9.5c). At point C, we have


M_C=sqrt(((0.1*0.1))+((1.5*1.5)))

% Similarly, at D and E,


M_D=sqrt(((0.3*0.3))+((2.1*2.1)))


M_E=sqrt(((1.1*1.1))+((0.7*0.7)))

% The maximum bending moment is at D. Note from Figure 9.5d that the torque is also               % maximum at D, T_D=1 kN∙m. The exact location along the shaft where the maximum stress    % occurs, the critical section, is therefore at D. Hence, at point D, T_D=1, M_m=0, M_a=2.121    % kN∙m, Tm=1 kN∙m, T_a=0.1(1)=0.1 kN∙m


T_D=1; 
       M_m=0; 
M_a=2.121; 
T_m=1; 
T_a=0.1*1;

% Using Eq. (7.1), the endurance limit of the material is


Sp_e=0.5*S_u

% By Eq. (7.7) and Table 7.2, we determine that, for a ground surface,


A=1.58; 
b=-0.085;


C_f=A*power(S_u, b)

% For reliability of 50 %, we have C_r=1 from Table 7.3. Assuming that the shaft diameter will be % larger than 51 mm, C_s=0.70 by Eq. (7.9). The temperature factor is found applying Eq. (7.11):


C_r=1; 
C_s=0.70;


C_t=1-0.0058*(T-450)

% We can now determine the modified endurance limit by Eq. (7.6):


S_e=C_f*C_r*C_s*C_t*(1/K_f)*Sp_e

% Because the loading is smooth, K_sb=K_st=1 from Table 9.1.

% Substituting the S_y=605 MPa for S_u and numerical values obtained into Eq. (9.14), we have


K_sb=1; 
K_st=1;

S_y=605;


D=power((n/(S_y*10^6))*(32/pi)*sqrt(power((M_m+(S_y/S_e)*M_a),2)+(3/4)*power((T_m+(S_y/S_e)*T_a),2)),1/3)

% Comments: Since this is larger than 51 mm, our assumption is correct. A diameter of 70 mm is % therefore quite satisfactory.

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 9.3:
M_C =

    1.5033

M_D =

    2.1213

M_E =

    1.3038

Sp_e =

   405

C_f =

    0.8942

C_t =

    0.7100

S_e =

  128.5640

D =

    0.0070

Results in textbook notation with units:
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% EXAMPLE 9.5     Determining Critical Speed of a Hollow Shaft

% A shaft with inner and outer diameters of d and D, respectively, is mounted between bearings % and supporting two wheels as shown in Figure 9.8. Calculate the critical speed in rpm,             % applying: (a) The Rayleigh method, (b) the Dunkerley method.

% Given: d=30 mm, 
D=50 mm


d=30; 
D=50;   g=9.81;

% Assumptions: The shaft is made of L=1.5 m long steel having E=210 GPa. The weight of shaft is % ignored. Bearings act as simple supports.


L=1.5;

E=210*10^9;

% Solutions: The moment of inertia of the cross sections is I=pi/4(25^4-15^4)=267×10^3mm^4. The % concentrated forces are W_C =20×9.81=196.2 N and W_D=30×9.81=294.3 N. Static deflections  % at C and D can be obtained by the equations for case 6 of Table A.9:


I=267*10^-9;

W_C=196.2;

W_D=294.3;

% delta=(W_Cbx/(6LEI))(L^2-b^2-x^2)

(0 ≤ x ≤ a)


(a)

% delta=(Wa(L-x)/(6LEI))(2Lx-a^2-x^2)

(a ≤ x ≤ L)


(b)

% Deflection at C. Due to the load at C [b=1 m and x=0.5 m, Eq.(a)]:


b=1;
x=0.5;


delta_C_p= (W_C*b*x)*(L*L-b*b-x*x)/(6*L*E*I)

% Owing to load at D [b=0.4 m and x=0.5 m, Eq.(a)]:


b=0.4;
x=0.5;
delta_C_dp= (W_D*b*x)*(L*L-b*b-x*x)/(6*L*E*I)

% Total deflection is then


delta_C=delta_C_p+delta_C_dp

% Deflection at D. Due to the load at C [a=0.5 m, x=1.1 m, Eq.(b)]:


a=0.5;
x=1.1;
delta_D_p= (W_C*a*(L-x))*(2*L*x-a*a-x*x)/(6*L*E*I)

% Owing to load at D [b=0.4 m, x=1.1 m, Eq.(a)]:


b=0.4;
x=1.1;


delta_D_dp= (W_D*b*x)*(L*L-b*b-x*x)/(6*L*E*I)

% and hence


delta_D=delta_D_p+delta_D_dp

% (a) Using Eq.(9.18) with m=2, we have

     
n_cr=(1/(2*pi))*(sqrt((g*(W_C*delta_C+W_D*delta_D))/(W_C*power((delta_C), 2)+W_D*power((delta_D), 2))))


n_cr=n_cr*60

% (b) Equation (9.19) may be rewritten as

%
1/(n_cr^2)= 1/(n_cr, C^2)+ 1/(n_cr, D^2)

% where


n_cr_C=(1/(2*pi))*sqrt(g/delta_C_p)*60


n_cr_D=(1/(2*pi))*sqrt(g/delta_D_dp)*60

% Solving, using Equation (9.21) is therefore


n_cr=(n_cr_C*n_cr_D)/sqrt(n_cr_C^2+n_cr_D^2)

% Comments: A omparison of the results obtained shows that, the Rayleigh’s equation                % overestimates and the Dunkerley’s equation underestimates the critical speed. It follows that % the actual critical speed is between 1459 rpm and 1522 rpm. Design of shaft should avoid this % operation range.

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 9.5:
delta_C_p =

  1.9440e-004

delta_C_dp =

  2.1462e-004

delta_C =

  4.0902e-004

delta_D_p =

  1.4308e-004

delta_D_dp =

  2.2581e-004

delta_D =

  3.6889e-004

n_cr =

   25.3741

n_cr =

   1.5224e+003
n_cr_C =

  2.1452e+003

n_cr_D =

  1.9904e+003

n_cr =

  1.4591e+003

Results in textbook notation with units:
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% EXAMPLE 10.1     Preliminary Design of a Boundary-Lubricated Journal Bearing

% 1+1/4 in. , steel shaft having 450 Bhn with an excellent lubrication rotates continuously at a   % load of 40 lb at 20 rpm for 3.5 years in a sleeve of bronze-lead having 170 Bhn Figure 10.4.           % Estimate the largest length L of the sleeve.


H_s=170;

% Given: 
D=1¼ in.,
H=450 Bhn, 
n=30 rpm, 
W=40 lb, 
t=2 years.

    
D=1.25;

H=450;

n=30;

W=40; 

t=60*24*365*2;

% Assumptions: Maximum wear of the bearing is to be d=0.002 in. Bronze if partially compatible % with steel, and lead is incompatible.


delta=0.002;

% Solution: A conservative value of K=1*(10^-7) will be taken for partially compatible materials % and excellent lubrication from Table 8.3. The hardness of sleeve, softer material in bearing,   % must be used (see Sec. 8.5) and thus

   
K=1*(10^-7);


H=1424*H_s

% The length of sliding equals


l=n*pi*D*t

% The bearing length, from Eq.(8.3) is given by


L=(K*W*l)/(H*D*delta)

% Comments: The next largest available standard length, probably  L=1.0 in., should be used.     % Note as a check that:

    
L=1.0;


P=W/(D*L)


V=pi*D*n/12

% and


PV=P*V

% The foregoing results are well below the maximum allowable values given in Table 10.1 for    % bronze-lead.

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 10.1:
H =

      242080

l =

  1.2384e+008

L =

    0.8185

P =

    32

V =

    9.8175

PV =

  314.1593

Results in textbook notation with units:
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% EXAMPLE 10.5     Median Life of a Deep-Groove Ball Bearing

% A 50-mm bore (02-series) deep-groove ball bearing, such as shown in Fig. 10.22a, carries a       % combined load of 9 kN radially and 6 kN axially at 1200 rpm. Calculate


F_r=9*1000; 
F_a=6*1000; 
n=1200; 
V=1;

% (a) The equivalent radial load

% (b) The median life in hours.

% Assumptions: The inner ring rotates and the load is steady.

% Solution: Referring to Table 10.4, we find that, for a 50-mm bore bearing, C=35.1 kN and        % C_s=19.6 kN.


C=35.1*1000;
 C_s=19.6*1000;

% (a) To obtain the values of the radial load factors X and Y, it is necessary to obtain


F_a_div_C_s=F_a/C_s


F_a_div_VF_r=F_a/(V*F_r)

% We find from Table 10.6 that F_a/VF_r > e;  X=0.56 and Y=1.13 by interpolation. Applying Eq.     % (10.25),


X=0.56; 
Y=1.13;


P=X*V*F_r+Y*F_a

%Through use of Eq.(10.26),


P=V*F_r

% (b) Since 11.95 > 9 kN, the larger value is used for life calculation. The rating life, from Eq.       % (10.29),  is


P=11.82*1000;

a=3; 


L_10=(C/P)^a
% By Eq.(10.30)


L_10=(1000000/(60*n))*L_10


Median_Life=5*L_10
-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 10.5:
F_a_div_C_s =
    0.3061
F_a_div_VF_r =
    0.6667
P =
       11820
P =
        9000
L_10 =
   26.1860
L_10 =
  363.6942
Median_Life =
  1.8185e+003
Results in textbook notation with units:
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% EXAMPLE 11.2     Gear Tooth and Gear Mesh Parameters

% Two parallel shafts A and B with center distance c are to be connected by 2-teeth/in.               % diametral pitch, 20o pressure angle, spur gears 1 and 2 providing a velocity ratio of r_s (Figure % 11.9). Determine, for each gear,

% (a) The number of teeth N

% (b) The radius of the base circle rb and outside diameter do, 

% (c) Clearance f

% (d) The pitch-line velocity V, if gear 2 rotates at speed n_2.

% Given: n_2=500 rpm, r_s=1/3, c=14. in.,  P=2 in.^-1,  phi=20o.


n_2=500; 
r_s=1/3; 
c=14.; 
P=2.;
 phi=20.;

% Design Decision: Common stock gear sizes are considered

% Solution:

%(a) Using Eq.(11.6) and (11.7) , we have r_1+r_2=c=14, r_1/r_2=1/3. Hence, r_1=3.5 in.,            % r_2=10.5 in., or d_1=7 in., d_2=21 in. Equation (11.2) lead to N_1=7(2)=14, N_2=21(2)=42


r_1=3.5; 
r_2=10.5; 
d_1=7; 

d_2=21; 
%Eq.(11.2)


N_1=d_1*P


N_2=d_2*P

% (b) Base circle radii, applying Eq. (11.9),


r_b1=r_1*cosd(phi)


r_b2=r_2*cosd(phi)

% From Table 11.1, the addendum a=1/2=0.5 in. Then,


a=1/P;


d_o1=d_1+2*a


d_o2=d_2+2*a

% (c) We have f=b_d-a. Table 11.1 gives the dedendum b_d=1.25/2=0.635 in. and hence


b_d=1.25/P


f=b_d-a

% for the pinion and gear. Note as a check that, from Table 11.1, f=0.25/2=0.125 in.

% (d) Substituting the given data, Eq. (11.7) result in

% r_2=10.5 in.=10.5/12 ft, omega_2=n_2*(2*pi/60)


r_2=10.5/12; 
omega_2=n_2*(2*pi/60);


V=r_2*omega_2

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 11.2:
N_1 =

    14

N_2 =

    42

r_b1 =

    3.2889

r_b2 =

    9.8668

d_o1 =

     8

d_o2 =

    22

b_d =

    0.6250

f =

    0.1250

V =

   45.8149

Results in textbook notation with units:
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% EXAMPLE 11.3     Contact Ratio of Meshing Gear and Pinion

% A gear set  has N1 –tooth pinion, N2 –tooth gear, pressure angle  and diametral pitch P (Fig. % 11.7). 

% Find:

% (a) The contact ratio.

% (b) The pressure angle and contact ratio, if the center distance is increased by 0.2 in.

% Given: N_1=15, 
N_1=45, 
phi=20o,
P=2.5 in.^-1.


N_1=15;
N_2=45;
phi=20; 
P=2.5;


a=1/P;

%(by Table 11.1)


inch_to_mm=25.4;

% Assumption: Standard gear sizes are considered. 

% Solution: Applying Eq.(11.2) the pitch diameter for the pinion and gear are found to be 

    
d_1=(N_1/P)

d_1_m=(N_1/P)*inch_to_mm

d_2=(N_2/P)

d_2_m=(N_2/P)*inch_to_mm

% Hence the gear pitch radii are


r_1=d_1/2

r_1_m=d_1_m/2

r_2=d_2/2

r_2_m=d_2_m/2
% (a) The center distance c is the sum of the pitch radii, So,


c=r_1+r_2

    
c_m=r_1_m+r_2_m
% The radii of the base circles, using Eq. (11.9),


r_b1=r_1*cosd(phi)

r_b1_m=r_1_m*cosd(phi)

r_b2=r_2*cosd(phi)

r_b2_m=r_2_m*cosd(phi)
% Substitution of numerical values into Eq. (11.14), gives the contact ratio as

C_r=(P/(pi*cosd(phi)))*(sqrt((r_1+a)^2-(r_b1)^2)+sqrt((r_2+a)^2-(r_b2)^2))-c*tand(phi)/(pi/P)

% Comment: The result, about 1.6, represents a suitable value.

% (b) For the case in which the center distance is increased by 0.2 in., we have c=12.2 in. it         % follows that 

    
c=12.2;

% c=(d_1+d_2)/2, d_1+d_2=2(12.2)=24.4 mm.            



(a)

% By Eq. (11.2), N_1/d_1=N_2/d_2, 15/d_1=45/d_2



(b)

% Solving Eqs. (a) and (b), we have d_1=6.1 in. and d_2=18.3 in. or r_1=3.05 in. and r_2=9.15 in.


d_1=6.1;
d_2=18.3; 
r_1=3.05;
r_2=9.15;

% The diameter pitch becomes P=N_1/d_1=15/6.1=2.459 in^-1. The addendum is therefore       % a=a_1=a_2=1/2.459=0.407 in. Base radii of the gears will remain the same. The new pressure % angle can now be obtained from Eq. (11.9):


P=2.459;
a=0.407;
a_1=a;

a_2=a;


phi_new=acos(r_b1/r_1)*180/pi

% Throughout the use of Eq. (11.14), the new contact ratio is then


C_r_new=(P/(pi*cosd(phi_new)))*(sqrt((r_1+a)^2-(r_b1)^2)+sqrt((r_2+a)^2-(r_b2)^2))-c*tand(phi_new)/(pi/P)

% Comment: Results show that increasing the center distance leads to an increase in pressure    % angle but decrease in the contact ratio.

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 11.3:
d_1 =

     6
d_1_m =

  152.4000

d_2 =
    18

d_2_m =
  457.2000

r_1 =
     3

r_1_m =
   76.2000

r_2 =
     9

r_2_m =
  228.6000

c =
    12

c_m =
  304.8000

r_b1 =
    2.8191

r_b1_m =
   71.6046

r_b2 =
    8.4572

r_b2_m =

  214.8137

C_r =
    1.6086

phi_new =
   22.4388

C_r_new =
    1.5203

Results in textbook notation with units:
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% EXAMPLE 12.2     Electric Motor Geared to Drive a Machine

% A motor at about n=2400 rpm drives a machine by means of a helical gearset as shown in       % Figure 12.7. Calculate


n=2400;

% (a) The value of the helix angle.

% (b) The allowable bending and wear loads using the Lewis and Buckingham formulas.

% (c) The horsepower that can be transmitted by the gearset.

% Given:  The gears have the following geometric quantities: P_n=5 in.^-1, phi =20o, c=9 in.,        % N_1=30, N_2=42, b=2 in.


P_n=5;
      phi=20.; 
c=9.;
 N_1=30; 
N_2=42; 
b=2.;

% Design Assumptions: The gears are made of SAE 1045 steel, water-quenched and tempered   % (WQ&T) and hardened to 200 Bhn.

% Solution:

% (a) From Eqs. (12.1) through (12.5), we have


P=(1/(2*c))*(N_1+N_2)


d_1=N_1/P


d_2=N_2/P


psi_1=acosd(N_1/(P_n*d_1))


psi_2=acosd(N_2/(P_n*d_2))


psi=psi_2;

% (b) The virtual number of teeth, using Eq.(12.7b), is


N=N_1;


Np=N/(cosd(psi)^3)
% Hence, interpolating in Table 11.2, Y=0.419. By Table 11.3 sigma_o=32 ksi. Applying the Lewis % equation, (11.33) with K_f=1, 


Y=0.419; 
sigma_o=32*1000;
K_f=1;


F_b=sigma_o*b*(Y/P_n)

% By Table 11.9, K=79 ksi, from Eq.(11.40),


K=79;
N_p=N_1; 
N_g=N_2;


Q=2*N_g/(N_p+N_g)

% The Buckingham formula, Eq. (11.32)


F_w=d_1*b*Q*K/(cosd(psi)^2)
% (c) The horsepower capacity is based on Fw since it is smaller than Fb. The pitch-line velocity % equals


n_1=n;


V=pi*d_1*n_1/12

% The dynamic load, using Eq.(11.24c), is F_d=((78+sqrt(V))/78)*F_t


F_d_div_F_t=((78+sqrt(V))/78)

% Equation (11.41), Fw  ≥  Fd, result in  F_w=F_d_div_F_t*F_t


F_t=F_w/F_d_div_F_t
% The corresponding gear power is therefore


hp=F_t*V/33000

% Observe that the dynamic load is about twice the transmitted load, as expected for reliable   % operation.

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 12.2:
P =

     4

d_1 =

    7.5000

d_2 =

   10.5000

psi_1 =

   36.8699

psi_2 =

   36.8699

Np =

   58.5937

F_b =

  5.3632e+003

Q =

    1.1667

F_w =

  2.1602e+003

V =

  4.7124e+003

F_d_div_ F_t =

    1.8801

F_t =

  1.1490e+003

hp =

  164.0719

Results in textbook notation with units:
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% EXAMPLE 12.5     Geometric Quantities of a Worm

% A triple threaded worm has a lead L of 75 mm. The gear has 48 teeth and is cut with a hob of % modulus m_n =7 mm perpendicular to the teeth. Calculate


N_w=3;

N_g=48;
L=75;

m_n=7;

% (a) The speed ratio r_s.

% (b) The center distance c between the shafts if they are 90o apart.

% Solution: For a 90o shaft angle, we have lambda=psi

% (a) The velocity ratio of the worm gear set is 


r_s=N_w/N_g

% (b) Using Eq. (12.20),


p_w=L/N_w

% From Eq. (12.2) with m_n=1/P_n, we obtain


p_n=pi*m_n

% Equation (12.1) result in


lambda=acos(p_n/p_w);


lambda_d=(acos(p_n/p_w))*180/pi

% Application of Eq. (12.21) gives


d_w=L/(pi*tan(lambda))

% Through the use of Eq. (12.18),


d_g=L/(pi*r_s)

% We then have


c=(d_w+d_g)/2

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 12.5:
r_s =

    0.0625

p_w =

    25

p_n =

   21.9911

lambda_d =

   28.4003

d_w =

   44.1521

d_g =

  381.9719

c =

  213.0620

Results in textbook notation with units:
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% EXAMPLE 13.3     Design Analysis of a V-Belt Drive

% The capacity of a V-belt drive is to be 10 kW, based on a coefficient of friction of 0.3.                % Determine the required belt tensions and the maximum tension.


V_capacity=10;  f=0.3;   g=9.81;

% Given: A driver sheave has a radius of r_1=100 mm, a speed  of n_1=1800 rpm and the contact % angle of phi=153. The belt weighs 2.25 N/m and the included angle is 36o.


r_1=0.1; 
n_1=1800; 
phi=153*pi/180; 
w=2.25; 
i_angle=36;

% Assumptions: The driver is a normal torque motor and driven machine involves light shock     % load.

% Solution: We have phi=153o=2.76 rad and beta=18o. The tight-side tension is estimated from Eq. % (13.20) as

%
F_1=F_c+(gamma/(gamma-1))*(T_1/r_1)                          


(a)



beta=i_angle/2;


V=2*pi*r_1*n_1/60;


F_c=(w/g)*V*V


gamma=exp(f*phi/sind(beta))


T_1=9549*V_capacity/n_1

% Carrying the preceding values into Eq.(a)


F_1=F_c+(gamma/(gamma-1))*(T_1/r_1)

% Then, by Eq. (13.19), the slack-side tension is


F_2=F_1-(T_1/r_1)

% Based upon a service factor of 1.2  (Table 13.5) to F1, Eq.(13.22) gives a maximum tensile       % force


K_s=1.2;


F_max=K_s*F_1

% applied to the belt.

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 13.3:
F_c =

   81.4921

gamma =

   13.3623

T_1 =

   53.0500

F_1 =

  654.9050

F_2 =

  124.4050

F_max =

  785.8860

Results in textbook notation with units:
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% EXAMPLE 13.6     Design of a Disk Brake

% A disk brake has two pads of included angle gamma=60o each, D=10 in., d= 5 in. (Figure 13.14). % Determine


gamma=60;
D=10;
d=5;

% (a) The actuating force required to apply one shoe.

% (b) The torque capacity for both shoes.

% Design Decision: Sintered-metal pads and cast iron disk are used with f=0.2 and p_max=200  % psi.


f=0.2;

p_max=200;

% Solution:

% (a) Equation (13.28) may be written in the form and introducing the given numerical values,


F_a=(gamma/360)*(pi*p_max*(d*(D-d)/2))



% (13.35)

% (b) From Eq. (13.30), we obtain


T=F_a*f*(D+d)/4

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 13.6:
F_a =

  1.3090e+003

T =

  981.7477

Results in textbook notation with units:
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% EXAMPLE 14.2     Allowable Load of a Helical Compression Spring

% A helical compression spring for mechanical device is subjected to an axial load P. Determine

% (a) The yield strength in the shear of the wire.

% (b) The allowable load P corresponding to yielding.

% Design Decisions: Use a 0.0625-in. music wire. The mean diameter of the helix is D=0.5 in. A  % safety factor of 1.5 is applied due to uncertainty about the yielding.


d=0.0625;   A=186;
b=-0.163; 
n=1.5;

% Solution: The spring index is C=D/d=0.5/0.0625=8.


C=8;

% (a) Through the use of Eq.(14.12) and Table 14.2, We have


S_u=A*(d^b)

% Then, by Table 14.3,


S_ys=0.4*S_u

% The allowable load is obtained by applying Eq. (14.6) as


tau_all=S_ys/n


K_s=1+0.615/C

%(from Equation 14.7)

P_all=tau_all*1000*pi*d*d/(8*K_s*C)

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 14.2:
S_u =

  292.2702

S_ys =

  116.9081

tau_all =

   77.9387

K_s =

    1.0769

P_all =

   13.8777

Results in textbook notation with units:
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% EXAMPLE 14.8     Design of a Nine-Leaf Cantilever Spring

% A spring 0.9 m-long cantilever spring has 80 mm wide nine leaves. This spring is subjected to a % concentrated load P at its free end.

% Find: The dept of the leaves and the largest bending stress.

% Given: b=80 mm,
L=0.9 m,
P=2.5 kN,
n=9,
E=200 GPa,
nu=0.3


b=0.08;

L=0.9;
P=2.5*1000;
n=9;
E=200*10^9
nu=0.3;
% Assumption: Maximum vertical deflection caused by the load will be limited to 50 mm.


delta=0.05;

% Solution: Equation (14.43) may be rearranged into the form


h=power(((1-nu*nu)*(6*P*L^3)/(E*n*b*delta)), 1/3)

% Equation (14.42) results in the maximum stress,


sigma_max=6*P*L/(n*b*h*h)

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 14.8:
h =

    0.0111

sigma_max =

  1.5112e+008

Results in textbook notation with units:
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% EXAMPLE 15.1     Quadruple-Threaded Power Screw

% A screw jack with an Acme thread of diameter d, similar to that illustrated in figure 15.6, is     % used to lift a load of W. Determine

% (a) The screw lead, mean diameter, and helix angle.

% (b) The starting torque for lifting and for lowering the load.

% (c) The efficiency of the jack when lifting the load, if collar friction is neglected.

% (d) The length of a crank required, if F=150 N is exerted by an operator.


F=150;

% Design Assumption: The screw and nut are lubricated with oil. Coefficients of friction are        % estimated as f=0.12 and f_c=0.09.


f=0.12;
f_c=0.09;

% Given: d=30 mm and W=6 kN. The screw is quadruple threaded having a pitch of p=4 mm. The % mean diameter of the collar is d_c=40 mm.


d=30;
W=6;
p=4;
d_c=40;
       n=4;

% Solution:

% (a) From Figure 15.3, d_m=d-p/2=30-2=28 mm. Through the use of Eqs. (15.1) and (15.2), we % have


d_m=28;


L=n*p


lambda=atand(L/(pi*d_m))

% (b) The coefficients of friction for starting are f=(4/3)*(0.12)=0.16 and f_c=(4/3)*(0.09)=0.12. % For an Acme thread alpha=14.5 (Figure 15.4a), by Eq. (15.8),


f=0.16;

f_c=0.12;
alpha=14.5;


alpha_n=atand(cosd(lambda)*tand(alpha))

% Then, application of Eqs. (15.6) and (15.7) results in


T_u=(W*d_m/2)*(f+cosd(alpha_n)*tand(lambda)/(cosd(alpha_n)-f*tand(lambda)))+(W*f_c*d_c)/2


T_d=(W*d_m/2)*(f-cosd(alpha_n)*tand(lambda)/(cosd(alpha_n)+f*tand(lambda)))+(W*f_c*d_c)/2

% The minus sign in the first term of T_d means that the screw alone is not self-locking and        % would rotate under the action of the load, except that the collar friction must be overcome   % too. Since T_d is positive, the screw does not overhaul.

% (c) The running torque needed to lift the load is based on f=0.12. Using Eq. (15.13), we have


f=0.12;


e=(cosd(alpha_n-f*tand(lambda)))/(cosd(alpha_n)+f*cotd(lambda))

% (d) The length of the crank arm is


a=T_u/F

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 15.1:
L =

    16

lambda =

   10.3089

alpha_n =

   14.2756

T_u =

   43.5919

T_d =

   13.0066

e =

    0.5950

a =

    0.2906

Results in textbook notation with units:
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% EXAMPLE 15.5     Preloaded Bolt Connecting the Head and Cylinder of a Pressure Vessel
% Figure 15.15 illustrates a portion of a cover plate bolted to the end of a thick-walled cylindrical % pressure vessel. A total of N_b bolts are to be used to resist a separating force P. Determine

% (a) The joint constant.

% (b) The number N_b for a permanent connection.

% (c) The tightening torque for an average condition of thread friction.

% Given: The required joint dimensions and materials are shown in the figure. The applied load % P=55 kips. d=3/4 in., L=2 in. from Figure 15.15.


P=55;

d=3/4; 

L=2;

% Design Assumptions: The effects of the flanges on the joint stiffness are omitted. The              % connection is permanent. A bolt safety factor of n=1.5 is used.

    
n=1.5;

% Solution:

% (a)Referring the Figure 15.15 Eq. (15.34) gives


k_p_div_E_s=0.58*pi*(1/2)*d/(2*log(5*(0.58*L+0.5*d)/(0.58*L+2.5*d)))

% Through the use of Eq. (15.31a), 


A=pi*d*d/4;


k_b_div_E_s=A/L

% Equation (15.22) is therefore


C=k_b_E_s/(k_b_E_s+k_p_E_s)

% (b) From Table 15.1 and 15.4, we have A_t=0.334 in2. and Sp=105 ksi. Applying Eq. (15.20),


A_t=0.334;
S_p=105;


F_i=0.9*S_p*A_t


% For N_b bolts, Eq. (15.26) can be written in the form from which numerical values,


N_b=C*P*n/(S_p*A_t-F_i)

% Comment: Nine bolts should be used.

% (c) By Eq. (15.21),


T=0.2*d*F_i

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 15.5:
k_p_div_E_s =
    0.3683
k_b_div_E_s =
    0.2209
C =
    0.3749
F_i =
   31.5630
N_b =
    8.8202
T =
    4.7345
Results in textbook notation with units:
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% EXAMPLE 16.1     Designing a Press Fit

% A steel shaft of inner radius a and outer radius b is to be press fit in a cast iron disk having      % outer radius c and axial thickness or length of hub engagement of l (Figure 16.6). Determine

% (a) The radial interference.

% (b) The force required to press together the parts and the torque capacity of the joint.

% Given: a=25 mm, b=50 mm, c=125 mm, and l=100 mm. The material properties are E_s=210    % GPa, nu_s=0.3, E_c=70 GPa, and nu_h=0.25.


a=0.025; 
b=0.05;
 
c=0.125;
 l=0.1; 


E_s=210*10^9;
 
nu_s=0.3;
 E_c=70*10^9;
 nu_h=0.25;

% Assumptions: The maximum tangential stress in the disk is not to exceed 30 MPa; the contact % pressure is uniform; and f=0.15.


sigma_theta_max=30*10^6;
 f=0.15;

% Solution:

% (a) Through the use of Eq. (16.17), with pi=p, a=b, and b=c, we have


p=sigma_theta_max*(c*c-b*b)/(b*b+c*c)

% From Eq. (16.25),

          delta=(b*p/E_c)*(((b*b+c*c)/(c*c-b*b))+nu_h)+ (b*p/E_s)*(((a*a+b*b)/(b*b-a*a))-nu_s)

% (b) The force (axial or tangential) required for the assembly and numerical values:


F=2*pi*b*p*f*l

% The torque capacity or torque carried by the press fit is then inserting the given data, we        % obtain


T=F*b

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 16.1:
p =

  2.1724e+007

delta =

  3.2377e-005

F =

  1.0237e+005

T =

  5.1186e+003

Results in textbook notation with units:
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% EXAMPLE 16.9     Design of a Parabolic Pressure Vessel

% A parabolic shell is closed at the top by a thick plate and subjected to internal pressure p        % (Figure 16.21a). At level A-A, calculate the minimum permissible thickness t_all of the shell.

% Given: p=200 psi


p=0.2;

% Design Decision: The parabola is y=x^2/4, in which x and y are in inches.

% Assumptions: At level A-A, the allowable membrane stress sigma_all=16.5 ksi. Section A-A is  % away from the top.


sigma_all=16.5;

% Solution: Let the load resultant for the portion of the below plane A-A be F (Figure 16.21b). At % level A-A,


y=25;


x=sqrt(4*y)

  
 r_o=x

% and hence dy/dx=x/2=5. From the geometry,


r_theta=10*(sqrt(26)/5)

% The familiar expression for the curvature then gives


dy_dx=5;
ddy_ddx=1/2;


r_phi=power((1+dy_dx*dy_dx), 1.5)/ddy_ddx

% The membrane forces per unit length at A-A can now be obtained by applying Eq. (16.64):

    
F=-p*pi*r_o*r_o;


sin_phi=5/sqrt(26);


N_phi=-F/(2*pi*r_o*sin_phi)


N_theta=(p-N_phi/r_phi)*r_theta

% Solving, N_theta=2.0 kips. In as much as N_theta > N_phi, we have


t_all=N_theta/sigma_all

% Comment: The required shell thickness should be 1/8 in. at level A-A.

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 16.9:
x =

    10

r_o =

    10

r_theta =

   10.1980

r_phi =

  265.1490

N_phi =

    1.0198

N_theta =

    2.0004

t_all =

    0.1212
Results in textbook notation with units:
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% EXAMPLE 17.3     Displacements in a Frame

% A planar rectangular frame 1234 is fixed at both supports 1 and 4 (Figure 17.12). The load on % the frame consists of a horizontal force P acting at joint 2 and a moment M applied at joint 3. % By the finite element analysis, calculate the nodal displacements.

% Given: P=4 kips, M=2 kip∙in., L=5 ft, E=30×10^6 psi, and A=5 in.^2 for all elements; I=120 in.^4 % for elements 1 and 3 and I=60 in.^4 for element2.

% Solution: The global coordinate axes xy are indicated in Figure 17.12. Through the use of Eq.  % (17.24) and Table 17.2, the element stiffness matrices are obtained as [k]_1, [k]_2, and [k]_3.

% We suppose to the element stiffness matrices and apply the boundary conditions:                    % u_1=v_1=theta_1=0, u_4=v_4=theta_4=0 at nodes 1 and 4. This leads to the following             % reduced set of equations:

% Put Stiffness matrix [K];

K=[5.4 0 12 -5 0 0;

0 5.2 6 0 -0.2 6;

12 6 720 0 -6 120;

-5 0 0 5.4 0 12;

0 -0.2 -6 0 5.2 -6;

0 6 120 12 -6 720];

K=5*10^5*K

% Get inverse matrix


iK=inv(K);

% Put Given Force GF


GF=[4000 0 0 0 0 2000];

% Get GF transpose matrix


tGF=transpose(GF);

% Solving the nodal deflections, rotations:{disp}={u_2, v_2, theta_2, u_3, v_3, theta_3} 

% Calculate {disp}=[iK]*{tGF}


disp=iK*tGF;


disp=1000*disp

% The results need to be divided by 1000.

% The negative sign indicates a downward displacement or clockwise rotation.

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Example 17.3:
K =

     2700000           0     6000000    -2500000           0           0

           0     2600000     3000000           0     -100000     3000000

     6000000     3000000   360000000           0    -3000000    60000000

    -2500000           0           0     2700000           0     6000000

           0     -100000    -3000000           0     2600000    -3000000

           0     3000000    60000000     6000000    -3000000   360000000
disp =

   18.2065

    0.5784

   -0.2716

   17.4112

   -0.5784

   -0.2490

Results in textbook notation with units:
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% Case Study 1.1     Bolt Cutter Loading Analysis
% Many components, such as bicycle levers, automotive scissors-jacks, various type of pliers,    % and pin-connected symmetrical assemblies may be treated by applying Eqs (1.5), similar to    % that will be illustrated here. We note that, a mechanical linkage system is designed to             % transform a given input force and movement into a desired output force and movement. In   % this case, acceleration on moving bar require that a dynamic analysis be done through the use % of Eq. (1.7). Bolt cutter can be used for cutting rods (see Page 25), wire mesh, and bolts.         % Often, a bolt cutter's slim cutting head permits cutting close to surfaces and incorporates       % one-step internal cam mechanism to maintain precise jaw or blade alignment. Handle design % and handle grips lend to controlled cutting action. Jaws are manufactured from heat-treated, % hardened alloy steel. Figure 1.5b shows a pin-connected tool in the closed position in the       % process of gripping its jaws into a bolt. The user provides between the handles, indicated as  % the reaction pairs P. Determine the force exerted on the bolt and the pins at joints A, B, and C.

% Given: The geometry is known. The data are P=2 lb, a=1 in., b=3 in., c=1/2 in., d=8 in., e=1 in.


P=2;
a=1;
b=3;
c=1/2;

d=8;
e=1;

% Assumptions: Friction forces in the pin joints are omitted. All forces are coplanar, two             % dimensional, and static. The weights of members are neglected as being insignificant               % compared to the applied forces.

% Solutions: The equilibrium conditions are fulfilled by the entire cutter. Let the force between % the bolt and the jaw be Q, whose direction is taken to be normal to the surface at contact      % (point D). Due to the Symmetry, only two FBDs shown in Figure 1.6 need be considered.         % Inasmuch as link 3 is a two-force member, the orientation of force F_A is known. Note also    %  that the force components on the two elements at joint B must be equal and opposite, as     % shown on the diagrams.

% Conditions of equilibrium are applied to Figure 1.6a to give F_Bx=0 and

% Unknowns Forces: {F}={Q, F_Ay, F_Bx, F_By, F_Cx, F_Cy};

%
∑F_x= F_Bx=0

%

>
0 Q+0 F_Ay+1 F_Bx+0 F_By+0 F_Cx+0 F_Cy=0

%
∑F_y=Q-F_Ay +F_By=0

%

>
1 Q-1 F_Ay+0 F_Bx+1 F_By+0 F_Cx+0 F_Cy=0

%
∑M_B=Q(4)-F_Ay(3)=0

%

>
4 Q-3 F_Ay+0 F_Bx+0 F_By+0 F_Cx+0 F_Cy=0

% In a like manner, referring to Figure 1.6b, we obtain

%
∑F_x= -F_Bx+F_Cx =0

%

>
0 Q+0 F_Ay-1 F_Bx+0 F_By+1 F_Cx+0 F_Cy=0

%
∑F_y=-F_By +F_Cy-2=0

%

>
0 Q-0 F_Ay+0 F_Bx-1 F_By+0 F_Cx+1 F_Cy=2

%
∑M_C= F_Bx (1)+F_By(0.5)-2(8)=0

%

>
0 Q+0 F_Ay+1 F_Bx+0.5 F_By+0 F_Cx+0 F_Cy=16

% Given Forces: {R}={0, 0, 0, 0, 2, 16};

% Put Stiffness matrix [K];


K=[0 0 1 0 0 0; 1 -1 0 1 0 0; 4 -3 0 0 0 0; 0 0 -1 0 1 0; 0 0 0 -1 0 1; 0 0 1 0.5 0 0]

% Get inverse matrix


iK=inv(K);

% Put Given Force GF


GF=[0 0 0 0 2 16];

% Get GF transpose matrix


tGF=transpose(GF);

% Unknowns Forces: {F}={Q, F_Ay, F_Bx, F_By, F_Cx, F_Cy};

% Calculate {F}=[iK]*{tGF}


F=iK*tGF

% Comments: Observe that the high mechanical advantage of the tool transforms the applied   % load to a large force exerted on the bolt at point D. The handles and jaws are under combined % bending and shear forces. Stresses and deflections of the members are taken up in Case         % Studies 3.1 and 4.1 in Chapters 3, 4, and 5, respectively. MATLAB solution of this case study and some others are on website (see Appendix E).
-------------------------------------------------------------------------------------------------------------------------------

>> Results - Case Study 1.1:
K =

         0         0    1.0000         0         0         0

    1.0000   -1.0000         0    1.0000         0         0

    4.0000   -3.0000         0         0         0         0

         0         0   -1.0000         0    1.0000         0

         0         0         0   -1.0000         0    1.0000

         0         0    1.0000    0.5000         0         0

F =

    96

   128

     0

    32

     0

    34

Results in textbook notation with units:
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% Case Study 3.1     Bolt Cutter Stress Analysis
% A bolt cutting tool is shown in Figure 1.5. Determine the stresses in the members.

% Given: The geometry and forces are known from Case Study 1.1. Material of all parts is AISI    % 1080 HR steel. Dimensions are in inches. We have S_y=60.9 ksi (Table B.3), S_ys=0.5S_y=30.45 % ksi, E=30×10^6 psi.


S_y=60.9;
S_ys=0.5*S_y;
        E=30*10^6;

% Assumptions: 1.The loading is taken to the static. The material is ductile, and stress                  % concentration factors can be disregarded under safety loading. 2.The most likely failure points % are in link 3, the hole where pins are inserted, the connecting pins in shear, and jaw2 in          % bending. 3.Member 2 can be approximated as a simple beam with an overhang.

% Solution: See Figure 1.5 and 3.31. The largest force on any pin in the assembly is at joint A.     % Member 3 is a pin-ended tensile link. The force on a pin is 128 lb, as shown in Figure 3.31a.    % The normal stress is therefore


F_A=128;


w_3=3/8;
d=1/8;

t_3=1/8;


sigma=F_A/((w_3-d)*t_3)

% For the bearing stress in the joint A, using Eq. (3.5), we have


sigma_b=F_A/(d*t_3)

% The link and other members have ample material around holes to prevent tear out. The 1/8 in. % diameter pins are in single shear. The worst-case direct shear stress, from Eq. (3.4),


tau=4*F_A/(pi*d*d)

% Member 2, the jaw, is supported and loaded as shown in Figure 3.31b. The moment of inertia % of the cross-sectional area is


t_2=3/16; h_2=3/8;


I=t_2*(h_2^3-d^3)/12

% The maximum moment, that occurs at point A of the jaw, equals M=F_B*b=32(3)=96 lb∙in.     % The bending stress is then


M=96;
 c=3/16;


sigma_C=M*c/I

% It can readily be shown that, the shear stress is negligibly small in the jaw. Member 1, the       % handle, has an irregular geometry and is relatively massive compared to the other                    % components of the assembly. Accurate values of stresses as well as deflection in the handle   % may be obtained by the finite element analysis.

% Comment: The results show that the maximum stresses in members are well under the yield % strength of the material.

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Case Study 3.1:
sigma =

        4096

sigma_b =

        8192

tau =

  1.0430e+004

I =

  7.9346e-004

sigma_C =

  2.2686e+004

Results in textbook notation with units:
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% Case Study 4.1     Bolt Cutter Deflection Analysis
% Members 2 and 3 of the bolt cutter shown in Figure 3.31 are critically stressed. Determine the % deflections employing the superposition method.

% Given: The dimensions (in inches) and loading are known from Case Study 3-1. The parts are  % made of AISI 1080 HR steel having E=30×10^6 psi.


F_A=128;
E=30*10^6;
L_3=1.25;
A=(3/8)*(1/8); 
Q=96;

% Assumptions: The loading is static. The member 2 can be approximated as a simple beam with % a overhang.

% Solution: See Figures 3.31 (repeated here), 4.11 and Table A.9.

% Member 3. The elongation of the tensile link (Figure 3.31a) is obtained from Eq. (4.1). So, due % to symmetry in the assembly, the displacement of each end point A is


delta_A=(F_A*L_3)/(2*A*E)

% Member 2. The jaw is loaded as shown in Figure 3.31b. The deflection of point D is made up of % two parts: a displacement v_1 owing to bending of part DA acting as a cantilever beam and a   % displacement v_2 caused by the rotation of the beam axis at A (Figure 4.11). The deflection   % v_1 at D (by case 1 of Table A.9) is 

%
v_1=Q*a^3/(3*E*I)

% The angle theta_A at the support A (from case 7 of Table A.9) is 

%
theta_A=M*b/(3*E*I);

% where M=Qa. The displacement v_2 of point D, due to only the rotation at A, is equal to         % theta_Aa  or v_2=Q*b*a*a/(3*E*I)

% The total deflection of point D, v_1+v_2, is then v_D=(Q*a*a/(3*E*I))*(a+b)

% In the foregoing, we have


t_2=3/16;
h_2=3/8;


a=1; 
b=3;


I=t_2*h_2^3/12


v_D=(Q*a^2*(a+b))/(3*E*I)
% Comment: Only very small deflections are allowed in the members 2 and 3 to guarantee the  % proper cutting stroke, and the values are found and acceptable.

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Case Study 4.1:
delta_A =

  5.6889e-005

I =

  8.2397e-004

v_D =

    0.0052

Results in textbook notation with units:
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% Case Study 7.1     Camshaft Fatigue Design of Intermittent-Motion Mechanism
% Figure 7.16 illustrates a rotating camshaft of an intermittent-motion mechanism in its peak lift % position. The cam exert a force P on the follower, because of a stop mechanism ( not shown), % only during less than half of a shaft revolution. Calculate the factor of safety for the camshaft % according to the Coodman criterion.

% Given: The geometry is known and the shaft supports a pulsating force with P_max and          % P_min. The material of all parts is AISI 1095 steel, carburized on the cam surface oil quenched % and tempered (OQ&T) at 650 C. The fillet and adjacent surfaces are fine ground.

% Data: P_max=1.6 kips, P_min=0, S_u=130 ksi, S_y=80 ksi (from Table B.4), L_1=2.8 in., L_2=3.2 % in., L_3=0.5 in., L_4=1.5 in., L_5=L_1+(L_3+L_4)/2=3.8, L_6=L_2+(L_3+L_4)/2=4.2, D_s=1 in.,   % D_c=1.6 in., r_c=1.5 in., r=0.1 in., I/c=pi*D_s^3/32=98.175(10^-3) in.^3


P_max=1.6*10^3;
 P_min=0;
 S_u=130*10^3;
 S_y=80*10^3;
 L_1=2.8;
 
L_2=3.2;
L_3=0.5;
L_4=1.5;
L_5=L_1+(L_3+L_4)/2;
L_6=L_2+(L_3+L_4)/2;
D_s=1;

D_c=1.6;
r_c=1.5;
r=0.1; 
I_div_c=pi*D_s^3/32;

I=pi*((D_s/2)^4); 
c=D_s/2;

% Assumptions:

% 1. Bearings act as simple supports.

% 2. The operating temperature is normal.

% 3. The torque can be regarded negligible.

% 4. A material reliability of 99.99 % is required.

% Solution: See Figure 7.16 and 7.17. Alternating and mean stresses. The reactions at the           % supports A and B are determined by the conditions of equilibrium as


R_A=L_6*P_max/(L_5+L_6)


R_B=P_max-R_A

% and noted in Figure 7.17a.

% The plot of the moment diagram, from a “maximum” moment of 760×4.2=3192 lb∙in., is         % shown in Figure 7.17b. We observe the moment on the right side,


M=R_B*(L_6-L_4/2)

% is larger than (2562 lb∙in.) at the left side. We have


sigma_max=M/I_div_c


sigma_mim=0

% Equation (7.14) results in


sigma_a=sigma_max/2


sigma_m=sigma_a

% Stress concentration factors. The step in the shaft is asymmetrical. Stress at point E is              % influenced by the radius r=1.5 in. (equivalent to a diameter of 3.0 in.) and at point F by the 0.8 % in. cam radius (equivalent to D_c=1.6 in. diameter). Hence, we obtain the following values:

% At point E,


d=D_s;

r_div_d=r/d


D=3.0;

D_div_d=D/d


K_tE=1.8
% (from Figure C.9)

% At point F,


d=D_s;

r_div_d=r/d


D=1.6;

D_div_d=D/d


K_tF=1.7
% (from Figure C.9)

% For r=0.10 in. and S_u=130 ksi, by Figure 7.9a, q=0.86. It follows, from Eq. (7.13b), that 

    
q=0.86;


K_f_E=1+q*(K_tE-1)


K_f_F=1+q*(K_tF-1)

% Comments: Note that the maximum stress in the shaft is well under the material yield             % strength. The strength concentration at E is only 5% larger than that at F. Therefore fatigue    % failure is expected to begin at point F, where the stress pulses are tensile, and compressive at % E.

% Modified endurance limit. Through the use of Eq. (7.6), we have

% where


C_f=1.34*(130^-0.085);

% (from Table 7.2)


C_r=0.75;



% (by Table 7.3)


C_s=0.85;



% (from Eq. 7.9)


C_t=1.0;



% (room temperature)

K_f=1.6;


S_e_p=0.5*(S_u)


% (by Eq. 7.1)


S_e=C_f*C_r*C_s*C_t*(1/K_f)*S_e_p

% Factor of safety. The safety factor guarding against fatigue failure at point F is determined      % using Eq. (7.22):


n=S_u/(sigma_m+(S_u*sigma_a/S_e))

% Comments: If the road is properly controlled so that there is no impact, the forgoing factor    % seems well sufficient. Inasmuch as lift motion is involved, the deflection needs to be checked % accurately by FEA. Case Study 8.1 analysis contact stresses between cam and follower.

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Case Study 7.1:
R_A =

   840

R_B =

   760

M =

        2622

sigma_max =

  2.6707e+004

sigma_mim =

     0

sigma_a =

  1.3354e+004

sigma_m =

  1.3354e+004

r_div_d =

    0.1000

D_div_d =

     3

K_tE =

    1.8000

r_div_d =

    0.1000

D_div_d =

    1.6000

K_tF =

    1.7000

K_f_E =

    1.6880

K_f_F =

    1.6020

S_e_p =

       65000

S_e =

  2.2945e+004

n =

    1.4605

Results in textbook notation with units:

[image: image37.wmf]ABmaxmin

am

t

R = 840  lb,  R = 760  lb,  M = 2622  lb

in,   = 2.6707e+004  psi,   = 0

 = 1.3354e+004  psi,   = 1.3354e+004  ps

i

At point E: r/d = 0.1000,  D/d = 3,  K =

 1.8000

At point F: r/d = 0.1000,

ss

ss

×

t

fEfF

ee

  D/d = 1.6000,  K = 1.7000

(K) = 1.6880,  (K) = 1.6020

S' = 65000  psi,  S = 2.2945e+004  psi, 

 n = 1.4605



% Case Study 8.1     Cam and Follower Stress Analysis of an Intermittent-Motion                            % Mechanism
% Figure 7.16 shows a camshaft and follower if an intermittent-motion mechanism. For the       % position indicated, the cam exerts a force F_max in the follower. What are the maximum        % stress at the contact line between the cam and follower and deflection?

% Given: The shapes of contacting surface are known. The material of all parts is AISI 1095 steel, % carburized on the surfaces, oil quenched and tempered (Q&T) at 650o C.

% Data: F_max=1.6 kips,  r_c=1.5 in.,  D_f=L_4=1.5 in., E=30×10^6,  S_y=80 ksi,


F_max=1.6*10^3;  r_c=1.5;  D_f=1.5;  L_4=1.5;  E=30*10^6; S_y=80*10^3;

% Assumptions: Fractional forces can be neglected. The rotational speed is slow so that the       % loading is considered static.

% Solution; See Figures 7.16, Tables 8.4, B.1, and B.4. Equations on the second column of the      % case A of Table 8.4 apply. We first determine the half-width a of the contact path. Since          % E_1=E_2=E, Del=2/E, we have Equation and substitute the given data


E_1=E; 
E_2=E; 
Del=2/E;


a=1.076*sqrt((F_max/L_4)*r_c*Del)

% The rectangular patch area:


patchArea=2*a*L_4

% Maximum contact pressure is then


p_o=(2/pi)*(F_max/(a*L_4))

% The deflection delta of the cam and follower at the line of contact is obtained as follows and % introduce the numerical values,


delta=0.579*F_max/(E*L_4)*(1/3+log(2*r_c/a))

% Comments: The contact stress is determined to be less than the yield strength and the design % is satisfactory. The calculated deflection between the cam and the follower is very small and % does not effect the system performance.

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Case Study 8.1:
a =

    0.0111

patchArea =

    0.0333

p_o =

  6.1106e+004

delta =

  1.2211e-004

Results in textbook notation with units:
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% Case Study 9.1     Motor Belt Drive Shaft Design for Steady Loading
% A motor transmits the power P at the speed of n_o by a belt drive to a machine (Fig.9.4a). The % maximum tensions in the belt are designated by F_1 and F_2 with F_1 > F_2. The shaft will be % made of cold drawn ANSI 1020 steel of yield strength Sy. Note that design of main and drive  % shafts of a gear box will be considered in Case Study 18.5. Belt drivers are discussed in details % in Chapter 13.

% Find: Determine the diameter D of the motor shaft according to the energy of distortion of    % failure, based on a factor of safety n with respect to yielding.

% Given: Prescribed numerical values are 

%
L=230 mm, 
a=70 mm, 
r=51 mm, 
P=55 kW,

%
n_o=45000 rpm, 
S_y=390 MPa (from Table B.3), 
n=3.5


L=0.23;
a=0.07;
r=0.051;
P=55;
n_o=4500;
S_y=390*10^6; 
n=3.5;

% Assumptions: Friction at the bearings is omitted; bearings are act as simple supports. At         % maximum load F_1=5F_2.

% Solution: Reactions at Bearings. From Eq.(1.15), the torque applied by the pulley to the motor % shaft equals


T_AC=9549*P/n_o

% The forces transmitted through the belt is therefore


F_2=T_AC/r;


F_1=5*F_2;


F_1=2860;
F_2=572;

% Applying the equilibrium equations to the free-body diagram of the shaft (Fig. 9.4b), we have


R_B=(F_1+F_2)*(L+a)/L


R_A=R_B-(F_1+F_2)

% The result indicate that R_A and R_B act in the directions shown in the figure.

% Principal Stresses. The largest moment takes place at support B (Fig. 9.4c) and has a value of 


M_B=(F_1+F_2)*a

% Inasmuch as the torque is constant along the shaft, the critical sections is at B. It follows that


tau_piD3=16*T_AC


sigma_x_piD3=32*M_B

% sigma_y=0. For the case under consideration, Eqs. (3.33) reduce to


sigma_1_piD3=sigma_x_piD3/2+sqrt((sigma_x_piD3/2)^2+tau_piD3^2)


sigma_2_piD3=sigma_x_piD3/2-sqrt((sigma_x_piD3/2)^2+tau_piD3^2)

% Energy of Distortion Theory of Failure. Through the use of Eq. (6.14),


D=power((n/S_y)*(sqrt(sigma_1_piD3^2-sigma_1_piD3*sigma_2_piD3+sigma_2_piD3^2)/pi), 1/3)

% Comment: A commercially available shaft diameter of 30 mm should be selected.

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Case Study 9.1:  

T_AC =

  116.7100

R_B =

  4.4765e+003

R_A =

  1.0445e+003

M_B =

  240.2400

tau_piD3 =

  1.8674e+003

sigma_x_piD3 =

  7.6877e+003

sigma_1_piD3 =

  8.1173e+003

sigma_2_piD3 =

 -429.5824

D =

    0.0288

Results in textbook notation with units:
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% Case Study 18.1     Entire Frame Load Analysis
% (a) The design load on the front and rear wheels.

% (b) The factor of safety n_t for the crane tipping forward from the loading.

% Given: The geometry of each element is known. The cable and hook are rated at 15 kN, which % gives a safety factor of 5. The 85 mm diameter drum is about 20 times the cable diameter:     % The crane frame carries the load P, counterweight W_C, weight of parts W_i(i=1, 2, 3, 4, 5),   % and the push force F, as shown in Figure 18.2. The frame is made of b=50 mm and h=100 mm % structural steel tubing of t=6 mm thickness with weight w newtons per meter (Table A.4).


b=50;
 h=100;
t=6;

% Data: P=3 kN, F=100 N, W_C=2.7 kN, w=130 N/m, a=0.8 m, H=1 m, L_1=1.5 m, L_2=2 m,          % L_3=1 m, L_4=0.5 m, L_5=0.65 m and W_1=w*L_1=130(1.5)=195 N, W_2=wL_2=260 N,           % W_3=130 N, W_4=65 N, W_5=84.5 N


P=3*1000;
 F=100;
 W_C=2.7*1000;
 w=130;

a=0.8;    

H=1;
L_1=1.5;
L_2=2;

L_3=1;

L_4=0.5;
L_5=0.65;

W_1=195;
W_2=260;
W_3=130;
W_4=65;
W_5=84.5;

% For dimensions and properties of a selected range of frequently used crane members, refer to % manufacturers’ catalogs.

% Assumptions:

% 1. A line speed of 0.12 meter per second is used , as suggested by several catalogs for lifting. % The efficiency of the speed reduction unit or gear box is 95%. The electric motor has 0.5 hp    % capacity to lift 3 kN load for the preceding line speed and efficiency and includes an internal  % break to hold the load when it is inoperative. The gear ratio (see Case Study 18.4) satisfy the % drive system requirements.

% 2. Only the weights of concrete counterbalance and main frame parts are weld connected to     % one another.

% 3. Compression forces caused by the cable running along the members is ignored. All forces  % are static; F is x directed (horizontal) and remaining forces are parallel to the xy plane. Note   % that  the horizontal component of the reaction at B equals F/2, not included in Figure 18.2.

% Solution: See Figure 18.2; Section 1.9.

% (a) Reactional forces R_A and R_B acting on the wheels are determined by applying conditions % of equilibrium, ∑ M_z=0 at B and ∑ F_y=0, to the free body diagram shown in the figure with % F=0. Therefore, substitution of the given data into the foregoing results in


R_A=(1/2)*(P*L_1/L_3+(W_1/2)*(L_1/L_3)+W_C/4+W_3+W_5/2)


R_B=-R_A+P/2+W_1/2+W_2+W_3+W_4/2+W_C/2+W_5/2

% (18.1)

% Note that, when the crane is unloaded (P=0), 


P=0;


R_A=(1/2)*(P*L_1/L_3+(W_1/2)*(L_1/L_3)+W_C/4+W_3+W_5/2)


R_B=-R_A+P/2+W_1/2+W_2+W_3+W_4/2+W_C/2+W_5/2
% Comment: Design loads on front and rear wheels are 2747 N and 1415 N, respectively.

% (b) The factor of safety n_t is applied to tipping loads. The condition sum M_z =0 at point A:

   
 P=3*1000;


n_t=(1/(P*(L_1-L_3)+F*H))*(W_1*(L_3-L_1/2)+2*W_2*L_3+W_4*L_3 +(3/4)*W_C*L_3+((2*W_3+W_5)*L_3)/2)




% (18.2)

% Comments: For the preceding forward tipping analysis, the rear wheels and assumed to be    % locked and the friction id taken to be sufficiently high to prevent sliding. Side-to-side tipping  % may be checked similarly.

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Case Study 18.1:
R_A =

  2.7468e+003

R_B =

  665.5000

R_A =

  496.7500

R_B =

  1.4155e+003

n_t =

    1.7694
Results in textbook notation with units:
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% Case Study 18.2     Design Analysis of Arm CD

% The arm CD of which crane is represented schematically in Figure 18.2. Determine the             % maximum stress and the factor of safety against yielding. What is the deflection under the     % load using the method of superposition?

% Given: The geometry and loading are known from Case Study 18.1. The frame is made of         % ASTM-A36 structural steel tubing. From Table B.1: S_y=250 MPa, E=200 GPa


S_y=250*10^6;

E=200*10^9;

% Data from Case Study 18∙1: P=3 kN, F=100 kN, W_C=2.7 kN, w=130 N/m, a=0.8 m, H=1 m,      % L_1=1.5 m, L_2=2 m, L_3=1 m, L_4=0.5 m, L_5=0.65 m and W_1=w*L_1=130(1.5)=195 N,        % W_2=wL_2=260 N, W_3=130 N, W_4=65 N, W_5=84.5 N


P=3*1000;
 F=100*1000;
 W_C=2.7*1000;
 w=130;
a=0.8;

H=1;
L_1=1.5;
L_2=2;

L_3=1;

L_4=0.5;
L_5=0.65;

W_1=195;
W_2=260;
W_3=130;
W_4=65;
W_5=84.5;

% Assumptions: The loading is static. The displacements of welded joint C are negligibly small,   % hence part CD of the frame is considered a cantilever beam.

% Solution: See Figure 18.2 and 18.3, Table B.1; Section 3.7. We observe from figure 18.2 that   % the maximum bending moment occurs at points B and C and M_B=M_C=M. Since two vertical % beams resist moment at B, the critical section is at C of cantilever CD carrying its own weight % per unit length w and concentrated load P at the free end (Figure 18.3).

    
b=0.05;
 h=0.1;  t=0.006;

% The bending moment M and shear force V at the cross section through the point C, from static % equilibrium, have the following values:


M=P*L_1+w*L_1*L_1/2


V=P

% The cross-sectional area properties of the tubular beam are


A=b*h-(b-2*t)*(h-2*t)


I=b*h^3/12-(b-2*t)*(h-2*t)^3)/12

% where I represents the moment of inertia about the neutral axis. Therefore, the maximum     % bending stress at the top of outer fiber of section through C equals


c=h/2;


sigma_max=M*c/I

% where the shear strain is zero. The highest value of the shear stress occurs at the neutral axis. % Referring to Figure 18.3 and Eq. (3.21)


Q_max=b*(h/2)*(h/4)-(b-2*t)*(h/2-t)*(((h/2)-t)/2)


% (18.3)

% Hence,


tau_max=V*Q_max/(I*2*t)

% The factor of safety against yielding is then equal to


n=S_y/sigma_max

% This is satisfactory because the frame is made of average material operated in ordinary           % environment and subjected to known loads.

% Comments: At joint C, as well as at B, a thin (about 6 mm) steel gusset should be added at      % each side (not shown in the figure). These enlarge the weld area of the joints and help reduce % stress in the welds. Case study 18.9 illustrates the design analysis of the welded joint at C.

% When the load P and the weight w of the cantilever depicted in the figure act alone,                % displacement at D (from cases 1 and 3 of Table A.9) are PL_1^3 /3EI and PL_1^4 /8EI,              % respectively. It follows that, the deflection vD at the free end owing to the combined loading %  is


v_D=-P*L_1^3/(3*E*I)- w*L_1^4/(8*E*I)

% Here minus sign means a downward displacement.

% Comments: Since v_D << h/2, the magnitude of the deflection obtained is well within the        % acceptable range (see Section 3.7).

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Case Study 18.2:
M =

  4.6463e+003

V =

        3000

A =

    0.0017

I =

  2.0087e-006

sigma_max =

  1.1565e+008

Q_max =

  2.5716e-005

tau_max =

  3.2006e+006

n =

    2.1616

v_D =

   -0.0086

Results in textbook notation with units:
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% Case Study 18.7     Screw Design  for Swivel Hook
% The steel crane hook supported by a trunnion or crosspiece as shown in Figure 18.7 is rated at % P=3 kN. Determine the necessary nut length L_n. Observe that a ball-thrust bearing permits   % rotation of the hook for positioning the load. The lower race of the bearing and a third            % (bottom) ring have matching spherical surfaces to allow self-alignment of the hook within the % bearing load. Usually, bearing size selected for a given load and service has internationally     % standardized dimensions.


P=3*1000;

% Assumptions: Both the threaded portion of the shank or bolt and the nut are made of             % M12×1.75 class 5.8 rolled coarse threads. A stress concentration factor of K_t =3.5 and a        % safety factor n=5 is used for threads.


K_t=3.5; 
n=5;

% Given: From Table 15.2, p=1.75 mm, d=12 mm, d_m≈10.925 mm, d_r≈9.85 mm,                       % h=(d-d_r/2=1.075 mm, S_y=420 MPa (from Table 15.5)


p=1.75;  
d=12;  
d_m=10.925;  
d_r=9.85;  
S_y=420;


h=(d-d_r)/2

% Solution: See Figures 18.1 and 18.7; Section 15.7.

% Bearing Strength. For the nut, apply the following design formula (15.17a):

% Substituting the given numerical values, we have


L_n=(n/S_y)*(K_t*P*p/(pi*d_m*h))

% Shear Strength. Based on the energy of distortion theory of failure


S_ys=0.577*S_y

% From Figure 15.3, thread thickness at the root,


b=p/8+2*h*tand(30)

% The design formula from Eq. (15.19a):


L_n=(n/S_ys)*(3*K_t*P*p/(2*pi*d*b))

% Comment: A standard nut length of 10 mm should be used.

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Case Study 18.7:
h =

    1.0750

L_n =

    5.9288

S_ys =

  242.3400

b =

    1.4601

L_n =

   10.3315

Results in textbook notation with units:
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% Case Study 18.11     Brake Design Analysis

% A short-shoe brake is used on the drum, which is keyed to the center shaft of the high- speed % cutter as shown in Figure 18.10. The driven pulley is also keyed to the shaft. Determine the    % actuating force F_a.

% Assumptions: The brake shoe material is modeled material. The drum is made of iron. The     % lining rubs against the smooth drum surface, operating dry.

% Given: The drum radius r=3 in., torque T=270 lb∙in. (CW), a=12 in., b=1.2 in., d=2.5 in., the      % width of shoe w=1.5 in. (Figure 18.10). By Table 13.11, p_max=200 psi and f=0.35.


r=3;
T=270;
     a=12;
b=1.2;
    d=2.5;    w=1.5;
p_max=200;
f=0.35;

% Requirement: Shoe must be self-actuating.

% Solution: The normal force, through the use of Eq. (13.48), is


F_n=T/(f*r)

% The angle of contact, applying Eq. (13.47), is then


phi=2*asind(F_n/(2*p_max*r*w))

% The actuating force is obtained from Eq. (13.49) with d=c as follows:

    
d=c;


F_a=F_n*(b-f*d)/a

% Comments: Since phi < 45o, the short-shoe drum brake approximations apply. A positive value % of F_a means that the brake is not self-locking.

-------------------------------------------------------------------------------------------------------------------------------

>> Results - Case Study 18.11:
F_n =

  257.1429

phi =

   16.4264

F_a =

    6.9643

Results in textbook notation with units:
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