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6.2.4.  Bayesian Logistic Regression Using Stata 
 

Bayesian capabilities were added to Stata statistical software with version 14, which was 

released in April 2015. The final proofs pages of this book were submitted at the same time, but 

the production staff was able to include example code and partial output of a Bayesian logistic 

model using the new release of Stata. The code is on pages 148-149.  This added section to 

Chapter 6 will expand a bit on Stata’s Bayesian logistic regression capabilities.  

    The Stata bayesmh command provides a wide range of Bayesian modeling capabilities. The 

command allows Bayesian estimation using both built-in and user-defined non-informative and 

informative log-likelihood functions, as well as the same for built-in and user defined priors. The 

logit and logistic functions are used as a built-in or pre-defined canonical Bernoulli log-

likelihood function, and the binlogit function is a pre-defined canonical binomial log-likelihood 

function.  Recall that the canonical forms of the Bernoulli and binomial log-likelihoods are 

respectively employed for logistic and grouped logistic regression.   

    Stata also provides the user with a number of built-in univariate continuous prior distributions: 

normal, lognormal, uniform, gamma, inverse gamma, exponential, ebeta, chi2, jeffreys, and eight 

multivariate priors. Discrete priors offered include the Bernoulli, index and Poisson. Finally the 

flat prior is offered as a straightforward non-informative prior, and the logdensity prior is a 

generic prior which can be defined by the user. Note that the Cauchy and half-Cauchy priors, 

which are commonly used as priors for continuous predictors, do not have a built-in prior. Hence 

they must be defined by the user. An example will be provided in this section.  

    In the examples used for R’s MCMClogit function and for the JAGS, logistic models, we used 

the R84 (or rwm1984) data with ourwork as the binary response variable and predictors of 

female, kids, cdoc, and cage. Female and kids are binary, and both cdoc and cage are centered 

versions of docvis and age. We shall use the same model here.  

 

6.2.4.1: LOGISTIC REGRESSION NONINFORMATIVE PRIOR – USE BUILT-IN LOGIT 

 

We first model the data using a standard logistic model.  

 
. use rwm1984 

. center docvis, pre(c) 

. center age, pre(c) 

. logit outwork female kids cdoc cage, nolog 

 

Logistic regression                             Number of obs     =      3,874 

                                                LR chi2(4)        =    1172.93 
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                                                Prob > chi2       =     0.0000 

Log likelihood = -1959.1076                     Pseudo R2         =     0.2304 

 

------------------------------------------------------------------------------ 

     outwork |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      female |   2.256804   .0827624    27.27   0.000     2.094593    2.419016 

        kids |   .3579763   .0899639     3.98   0.000     .1816503    .5343023 

     cdocvis |   .0244323   .0062628     3.90   0.000     .0121574    .0367071 

        cage |   .0543791   .0041591    13.07   0.000     .0462274    .0625308 

       _cons |  -2.010276   .0810901   -24.79   0.000     -2.16921   -1.851342 

------------------------------------------------------------------------------ 

 

The bayesmh command calls on an internal MCMC sampling procedure to produce posterior 

distributions for the four predictors.  
 

. bayesmh outwork female kids cdoc cage,                  ///  

               likelihood(logit) prior({outwork:}, flat) ///  

               initial({outwork:} 0) 

 

Bayesian logistic regression                     MCMC iterations  =     12,500 

Random-walk Metropolis-Hastings sampling         Burn-in          =      2,500 

                                                 MCMC sample size =     10,000 

                                                 Number of obs    =      3,874 

                                                 Acceptance rate  =      .2062 

                                                 Efficiency:  min =     .02705 

                                                              avg =     .04604 

Log marginal likelihood = -1973.4741                          max =     .06151 

  

------------------------------------------------------------------------------ 

             |                                                Equal-tailed 

     outwork |      Mean   Std. Dev.     MCSE     Median  [95% Cred. Interval] 

-------------+---------------------------------------------------------------- 

      female |  2.262614   .0825773   .004108   2.261485   2.104129   2.427077 

        kids |  .3577974   .0875453    .00353   .3561315   .1882637   .5316499 

     cdocvis |  .0243963   .0061635   .000375   .0242458   .0128949   .0372316 

        cage |  .0544091   .0041393   .000173   .0543071   .0464286   .0625776 

       _cons | -2.015416   .0802389   .003825   -2.01226  -2.179253  -1.857551 

------------------------------------------------------------------------------ 

 

Notice the near identity of the standard frequency-based logistic regression and the Bayesian 

model with flat noninformative priors for all four predictors. The significance of the predictors 

are based on the credible intervals. None of the predictors have 0 within their credible interval. 

Therefore all are statistically significant.  

   The DIC statistic below is calculated as 3928.055. Since the DIC statistic, as AIC and BIC, is 

a comparative statistic, its value is not meaningful unless another model is being compared as to 

fit.  Note also that the log-likelihood value is displayed as -1973. Compare this value to the 

standard model log-likelihood of  -1959.  
 

. bayesstats ic 

 

Bayesian information criteria 

 

---------------------------------------------- 

             |       DIC    log(ML)    log(BF) 

-------------+-------------------------------- 

      active |  3928.055  -1973.474          . 

---------------------------------------------- 

Note: Marginal likelihood (ML) is computed 

      using Laplace-Metropolis approximation. 
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Standard Bayesian graphs are provided as displayed below. A single command will display 

graphs of all four predictors and the intercept. I have chosen to display only the two continuous 

predictors. 
 
. bayesgraph diagnostics {outwork: cdocvis} 

 
 
This is a diagnostic that a researcher would like to have for all studies. The trace in the upper left 

appears to display a fairly random iteration log. The histogram and density curve are fairly 

normal, and the mean values or estimates are close to the unimodal apex of the distribution.  The 

graph of centered age is not as good as for doctor visits.  If I were to run this model for a real 

research project, I would add more iterations to the sampling, and thin the selection of values by 

perhaps 3 or 5.  Thinning has the sampling algorithm select every 5
th

 observation to check, for 

example, not each observation. This helps prevent autocorrelation in the resultant posterior 

distribution.    Note that the default number of sampling iterations we have been using for our 

example is  10,000.  The default algorithm also employs a burn-in of 2500 iterations. Since early 

sampling is likely to be far off the true posterior mean value, a number of initial iterations are 

run, but do not figure in the calculation of the posterior mean. These initial iterations are referred 

to as burnin(). The default is 2500.                                                                                                    
 

. bayesgraph diagnostics {outwork: cage} 
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6.2.4.2: LOGISTIC REGRESSION NONINFORMATIVE PRIOR – USER DEFINED LOGIT 

 

We may define our logistic log-likelihood function. For many – perhaps most -- models this is 

mandatory. I will provide an example of how to do this for the simple canonical Bernoulli 

(logistic) distribution, calling it logitll.  The llevaluator function then calls this program. 

    I shall separate the log-likelihood function for when the response is 1 and when it is 0. Stata’s 

programming code symbolizes response values as $MH_y.  

 

LOGITLL  LLevaluator Function 

============================================== 
* Hilbe 2015 

program define logitll 

 version 14 

 args lnf xb 

 tempvar lnfj 

 quietly generate `lnfj' = ln(invlogit( `xb')) if $MH_y == 1  

 quietly replace `lnfj' = ln(invlogit(-`xb')) if $MH_y == 0  

 quietly summarize `lnfj', meanonly 

 if r(N) < $MH_n { 

 scalar `lnf' = . 

 exit 

} 

scalar `lnf' = r(sum) 

end 

================================================ 
 

 

Now we model the data using the logitll program we just wrote. Note that we use a llevaluator 

function in place of a likelihood function. 
 

. bayesmh outwork female kids cdocvis cage, llevaluator(logitll) prior({outwork:}, 

flat) 

   

Bayesian regression                              MCMC iterations  =     12,500 

Random-walk Metropolis-Hastings sampling         Burn-in          =      2,500 

                                                 MCMC sample size =     10,000 

                                                 Number of obs    =      3,874 

                                                 Acceptance rate  =      .3377 

                                                 Efficiency:  min =      .0107 

                                                              avg =     .03476 

Log marginal likelihood = -1973.4765                          max =     .07626 

  

------------------------------------------------------------------------------ 

             |                                                Equal-tailed 

     outwork |      Mean   Std. Dev.     MCSE     Median  [95% Cred. Interval] 

-------------+---------------------------------------------------------------- 

      female |  2.259041   .0826589   .007992   2.257999   2.103572   2.422472 

        kids |  .3561429   .0899495   .003257   .3553611   .1813112   .5314275 

     cdocvis |  .0245713   .0063388   .000293   .0245858   .0121213   .0372038 

        cage |  .0543688   .0041347   .000352   .0541872   .0466082   .0632439 

       _cons | -2.011333   .0812332   .005014   -2.01019  -2.171695  -1.853979 

------------------------------------------------------------------------------ 

 

 

The posterior means – or Bayesian parameter estimates – are the same as we calculated for the 

standard logistic regression model and for the Bayesian logistic model with the built-in logit 
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function.  Below I give the DIC and log-likelihood value for this model. It is statistically 

identical to the previous calculation.  
 

.  bayesstats ic 

 

Bayesian information criteria 

 

---------------------------------------------- 

             |       DIC    log(ML)    log(BF) 

-------------+-------------------------------- 

      active |  3928.014  -1973.476          . 

---------------------------------------------- 

Note: Marginal likelihood (ML) is computed 

      using Laplace-Metropolis approximation. 

 

 

6.2.4.3: LOGISTIC REGRESSION INFORMATIVE PRIORS –  USER DEFINED  LOGIT 
 

Now well display a model of the same data, but with half-Cauchy priors on both cdocvis and 

cage. The half Cauchy is a weak informative distribution. We apply it to the standard 

deviation/variance of the predictors. Rather than give flat priors to female and kids, we’ll give 

what is perhaps better referred to as diffuse priors, which is close to non-informative. We’ll give 

them a normally distributed prior, assuming that the posterior distribution of each is somewhat 

normally distributed --- which they are --- but given them extremely wide variances. In fact, the 

variances are so wide that little information is given. If we were serious about this research, I 

would consider a beta prior for both female and kids. But for this example a diffuse prior will do 

for the binary predictors. I will discuss more about using a beta prior for binary predictors 

following the example output.  

    In order to determine the half-Cauchy prior, we need to know the standard deviation of each of 

the continuous predictors.  We use the summary command to obtain these values 
 

. sum cdoc cage         # SDs  needed for bayesmh logdensity function 

 

  Variable |        Obs        Mean    Std. Dev.       Min        Max 

-----------+--------------------------------------------------------- 

      cdoc |      3,874    7.82e-08    6.275955  -3.162881   117.8371 

      cage |      3,874    1.22e-06     11.2401  -18.99587   20.00413 

 

 

The half-Cauchy is defined here as (with the predictors symbolized as X) 

 

                  log(sd(X)) – log(sd(X)^2 + X^2) – log(π) 
 

Note that the half-Cauchy prior specification from the logistic model may be used in other 

models such as Poisson.  The general specification is          
 

prior({outwork:cage}, logdensity(ln(11.24)-ln(11.24^2+({outwork:cage})^2)-ln(_pi))) 
 

regardless of the model being used. Priors are relevant to the likelihood of the predictor.         

      Alternatively, you may first rescale the cage variable by dividing it by its standard deviation 

as 
         . summarize cage 

         . replace cage = cage/`r(sd)' 
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and then by applying the standard Cauchy distribution (with scale 1) as the prior 

 
     prior({outwork:cage}, logdensity(-ln(_pi*(1+({outwork:cage})^2)))) 
 

The half-Cauchy as defined above will be  used in the log-likelihood function below. 
 

=========================================================== 
bayesmh outwork female kids cdocvis cage, llevaluator(logitll)         /// 

      prior({outwork:female kids _cons}, normal(0, 100000))            /// 

      prior({outwork:cdocvis},                                         /// 

      logdensity(ln(6.276)-ln(6.276^2+({outwork:cdocvis})^2)-ln(_pi))) /// 

      prior({outwork:cage},                                            /// 

      logdensity(ln(11.24)-ln(11.24^2+({outwork:cage})^2)-ln(_pi)))    /// 

      block({outwork:female kids _cons}) 

=========================================================== 
 

 

Bayesian regression                              MCMC iterations  =     12,500 

Random-walk Metropolis-Hastings sampling         Burn-in          =      2,500 

                                                 MCMC sample size =     10,000 

                                                 Number of obs    =      3,874 

                                                 Acceptance rate  =      .2586 

                                                 Efficiency:  min =     .05607 

                                                              avg =     .07764 

Log marginal likelihood =  -27363.58                          max =      .1156 

  

------------------------------------------------------------------------------ 

             |                                                Equal-tailed 

     outwork |      Mean   Std. Dev.     MCSE     Median  [95% Cred. Interval] 

-------------+---------------------------------------------------------------- 

      female |  2.241821   .0832145   .002934   2.242154   2.085017   2.412527 

        kids |  .2955727   .0897766   .003791   .2956706   .1274696   .4799008 

     cdocvis |   .019811   .0054574   .000161   .0198157   .0091171   .0302249 

        cage |  .0486332   .0037328   .000145   .0484574   .0414594   .0560532 

       _cons | -1.966496   .0796124   .003023  -1.964917  -2.122419  -1.816811 

------------------------------------------------------------------------------ 

 

. bayesstats ic 

 

Bayesian information criteria 

 

---------------------------------------------- 

             |       DIC    log(ML)    log(BF) 

-------------+-------------------------------- 

      active |  3930.211  -27363.58          . 

---------------------------------------------- 

Note: Marginal likelihood (ML) is computed 

      using Laplace-Metropolis approximation. 

 

 

Regarding the use of a beta prior for binary predictors. This is closely related to prior 

elicitation..  Suppose that you are interested in eliciting a Beta-prior for the probability {p} of 

being a female; i.e., you want to specify a Beta(a,b) prior for {p} for some parameters  -a- and -

b-. 

     One way to determine -a- and -b- is to match the first two moments on the Beta-distribution. 

You will need a priori information about the expected {p} in the general population, suppose 

mu=0.51, and its variance, sig2=0.051 (SD = 0.2258).  sig2 estimates the strength of your belief 

in mu, the smaller value for  sig2, the stronger the beliefs.  Then you have the equations 
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         a = (mu*(1-mu)/sig2 - 1)*mu     = 1.989 
   
. di (0.51*(1 - 0.51)/0.051 - 1)* 0.51 

1.989 

        

    b = (mu*(1-mu)/sig2 - 1)*(1-mu) = 1.911 
 

. di (0.51*(1 - 0.51)/0.051 - 1)* (1 - 0.51) 

1.911 

 

You may then specify -prior({p}, Beta(1.989, 1.911))- to express you’re a priori information 

about {p}. This is an informative prior, but not very strong one.  For example, Beta(19.89,19.11), 

would have the same expectation of 0.51 for {p} but would be much stronger. 

    Finally, we’ll obtain diagnostic graphs of the two continuous predictors. We’ll be particularly 

interested if the graph of cage is better distributed than before. If so, the half-Cauchy prior is 

likely a cause.   
 

. bayesgraph diagnostics {outwork: cdoc} 

 

 

 
 

 

 

. bayesgraph diagnostics {outwork; cage) 
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This graph is much better distributed than before. The earlier graph was nearly bimodal. Note 

that the credible interval of cage is more narrow with this model than for the models with non-

informative priors. The prior seems to have helped affect a better fit for centered age. In fact, the 

interval is more narrow for cdocvis with the prior than without it.  

 

 

6.2.4.4 BAYESIAN GROUPED LOGISTIC REGRESSION 
 
Grouped logistic regression models were discussed in the previous chapter.  Here we model 
grouped data using Bayesian methodology. Fortunately Stata has provided a built-in function 
for the binomial log-likelihood called binlogit. The function comes with an option, or argument, 
identifying the variable in the data that defines groups.  
    Recall that each observation in a grouped model has a response variable consisting of two 
components: a denominator specifying the number of observations with predictors having the 
same values, and a numerator depicting the number of cases in each observation for which the 
response variable has a value of 1.  
    We’ll use the 1912 Titanic shipping disaster data in grouped format for an example.  The 
variable cases tells us the number of observations having an identical pattern of covariate 
values. The variable survive tells us how many people in each covariate pattern survived. With 
binary variables age and sex and a three level categorical predictor, class, as predictors, the 
model may be set using the code below. A flat prior is given each predictor.   

 
. use titanicgrp, clear 

. bayesmh survive i.age i.sex i.class, likelihood(binlogit(cases)) /// 

        prior({survive:}, flat) 

 

.   .   . 

 

 

 

Bayesian binomial regression                     MCMC iterations  =     12,500 

Random-walk Metropolis-Hastings sampling         Burn-in          =      2,500 

                                                 MCMC sample size =     10,000 

                                                 Number of obs    =         12 
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                                                 Acceptance rate  =      .2727 

                                                 Efficiency:  min =     .03507 

                                                              avg =     .04823 

Log marginal likelihood = -79.019375                          max =     .08408 

------------------------------------------------------------------------------ 

             |                                                Equal-tailed 

     survive |      Mean   Std. Dev.     MCSE     Median  [95% Cred. Interval] 

-------------+---------------------------------------------------------------- 

         age | 

     adults  | -1.076341   .2428045   .012413  -1.074503  -1.577094  -.5995606 

             | 

         sex | 

        man  | -2.386441   .1461116   .007802  -2.385702  -2.680732  -2.099317 

             | 

       class | 

  2nd class  | -1.025378   .1929263   .006653  -1.033393  -1.399935   -.657782 

  3rd class  | -1.787636   .1734327   .007926  -1.785742  -2.141809  -1.458485 

             | 

       _cons |  3.105963   .3047856    .01609   3.099388    2.52093   3.729154 

------------------------------------------------------------------------------ 

 

 

We shall compare the above Bayesian grouped logistic` model with a standard grouped logistic 

regression. We expect that the mean values for the posterior distribution of each predictor are 

near the same as the parameter estimates in the standard model.  For space purposes the header 

statistics will not be displayed.  
 

 

. glm survive i.age i.sex i.class, fam(bin cases) nolog nohead 

 

------------------------------------------------------------------------------ 

             |                 OIM 

     survive |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         age | 

     adults  |  -1.055608   .2426561    -4.35   0.000    -1.531205   -.5800106 

             | 

         sex | 

        man  |  -2.369465   .1452512   -16.31   0.000    -2.654152   -2.084778 

             | 

       class | 

  2nd class  |  -1.010558   .1949348    -5.18   0.000    -1.392623   -.6284927 

  3rd class  |  -1.766372   .1707174   -10.35   0.000    -2.100971   -1.431772 

             | 

       _cons |   3.061882   .2980054    10.27   0.000     2.477802    3.645962 

------------------------------------------------------------------------------ 

 

The values are close, but can be made closer with more iterations, and thinning. Adding the 

following line of code to the code increases the default number of samples from 10,000 to 

40,000, a burn-in of 10,000 in place of the default 2,500 and thinning of 3. The default checks 

every sample draw is 1, which is the default value for thinning.  Using these amendments should   

bring the Bayesian (noninformative) and standard frequentist model values closer.  More 

iterations and perhaps a longer burnin could bring the values even closer.  

 
 

. bayesmh survive i.age i.sex i.class, likelihood(binlogit(cases)) /// 

        prior({survive:}, flat)  ///  

        mcmcsize(40000) burnin(10000) thinning(3)  
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Bayesian binomial regression                     MCMC iterations  =    129,998 

Random-walk Metropolis-Hastings sampling         Burn-in          =     10,000 

                                                 MCMC sample size =     40,000 

                                                 Number of obs    =         12 

                                                 Acceptance rate  =      .1547 

                                                 Efficiency:  min =     .04913 

                                                              avg =      .1105 

Log marginal likelihood =  -79.00091                          max =      .1614 

  

------------------------------------------------------------------------------ 

             |                                                Equal-tailed 

     survive |      Mean   Std. Dev.     MCSE     Median  [95% Cred. Interval] 

-------------+---------------------------------------------------------------- 

         age | 

     adults  | -1.062168   .2437522    .00335   -1.06257  -1.544836  -.5845023 

             | 

         sex | 

        man  | -2.380523   .1417244   .003197  -2.379758  -2.659573  -2.107879 

             | 

       class | 

  2nd class  | -1.016803   .1949742   .002427  -1.015071  -1.401847  -.6354437 

  3rd class  |  -1.77442   .1708537   .002562  -1.772023  -2.117457  -1.446969 

             | 

       _cons |  3.078187   .2990453   .004769   3.075592   2.498903   3.678929 

------------------------------------------------------------------------------ 

 

Care must be taken in assigning priors to model predictors. There is a lot of literature on the 

subject, but it extends beyond the scope of our discussion. Bayesian modeling is becoming very 

popular in many areas of research. In astrostatistics, for example, most all new statistical analysis 

of astrophysical data entails Bayesian modeling. Ecologists are also basing most of their research 

on Bayesian methods. Researchers in other areas are beginning to do the same. I have just 

touched on the basics of Bayesian modeling here.   


