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C H A P T E R 1

Fundamentals
Exercises

1.1 EXERCISE 1.1

Write a C-routine which implements the calculation of
√
x2 + y2 in a way

which avoids overflow. Consider the cases where x and y differ largely in
magnitude.

Solution

This calculation is finding the Euclidean norm of a vector (x, y). For a vector
with n components the best procedure to calculate the norm is to first find
the component with largest absolute value and divide each component by this
value. Then we calculate the sum of squares in ascending order starting with
the smallest component. This way it is less likely that small components are
lost. Taking then the square root and multiplying with the maximum absolute
value of the components gives the norm. If the components differ too much in
magnitude the smaller will not contribute.

1.2 EXERCISE 1.3

Let A be an n×n nonsingular band matrix that satisfies the condition Aij = 0
for |i− j| > r, where r is small, and let Gaussian elimination (introduced in
Linear Systems 2.2) be used to solve Ax = b. Deduce that the total number of
additions and multiplications of the complete calculation can be bounded by a
constant multiple of nr2.

Solution

Gaussian elimination is equivalent to LU -factorization where L is lower tri-
angular and U is upper triangular. Let l1, . . . , ln be the columns of L and
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uT1 , . . . ,u
T
n the rows of U . Then

A = LU = (l1 · · · ln)

 uT1
...
uTn

 =

n∑
k=1

lku
T
k .

Since the first k−1 components of lk and uTk are all zero, each of the matrices
lku

T
k has zeros in its first k rows and columns. L is normalized so that all its

diagonal elements are 1.
The algorithm starts with letting uT1 be the first row of A = A0 and l1 the

first column of A0 divided by A11. We then form the matrix

A1 = A0 − l1u
T
1 .

The first row and column of A1 are zero and hence uT2 is the second row of
A1, while l2 is its second column scaled such that L22 = 1 and so forth.

For general k, uTk is the k-th row of Ak−1 and lk is the k-th column of
Ak−1 scaled such that Lkk = 1. Next we calculate Ak = Ak−1 − lku

T
k .

Now if A is a banded matrix then so are U and L which can be see from
the construction above. Moreover uTk is the k-th row of A−

∑k−1
i=1 liu

T
i which

written in components is

Ukj = Akj −
k−1∑
i=1

LkiUij

Now Lki is zero for i < k − r, which means that the sum only runs from
max(1, k − r) to k − 1 and thus there are only at most r multiplications and
additions. Similarly, Ukj is zero for j > k + r and thus we calculate Ukj only
for j ≤ min(n, k + r) which is at most r values. Since k runs from 1 to n we
have at most nr2 operations to calculate U . Similarly for L. Solving the two
banded triangular systems involves 2nr operations.

1.3 EXERCISE 1.5

Examine the condition of the evaluating cosx.

Solution

The condition number K is defined as

K(x) =

∣∣∣∣xf ′(x)

f(x)

∣∣∣∣
For f(x) = cosx this becomes

K(x) =

∣∣∣∣x sinx

cosx

∣∣∣∣ = |x tanx|.

This becomes arbitrarily large for multiples of π2 which means that the relative
accuracy of cosx is arbitrarily inaccurate whenever its value is close to zero.
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1.4 EXERCISE 1.7

Let

A =

(
1000 999
999 998

)
Calculate A−1, the eigenvalues and eigenvectors of A, K2(A) and K∞(A).

What is special about the vectors

(
1

1

)
and

(
−1

1

)
?

Solution

The inverse of the matrix is

A−1 =

(
−998 999
999 −1000

)
The characteristic polynomial is

(1000− λ)(998− λ)− 9992 = λ2 − 1998λ− 1

with roots 999 ±
√

9992 + 1 = 999 ± 999
√

1 + 1
9992 . Thus one eigenvalue is

close to zero, while the other is close to 1998. The corresponding eigenvectors
are (

1
999 ±

√
1 + 1

9992

1

)
≈
(
−0.9989995

1

)
,

(
1.0010015

1

)
.

The condition number relating to the 2-norm is

K2(A) =
1 +

√
1 + 1

9992

1−
√

1 + 1
9992

≈ 3992006.

The ∞-norm of A and A−1 is

‖A‖∞ = ‖A−1‖∞ = 1999

and thus K∞(A) = 19992 = 3996001. Using the ∞-norm, the magnification
factor is ‖Ax‖∞/‖x‖∞ = ‖A‖∞ and(

1000 999
999 998

)(
1
1

)
=

(
1999
1997

)
.

Thus

(
1

1

)
is a direction of maximum magnification. Equivalently,

(
1999

1997

)
is

a direction of minimum magnification by A−1. On the other hand,(
−998 999
999 −1000

)(
−1
1

)
=

(
1997
−1999

)
.

Thus

(
−1

1

)
is a direction of maximum magnification by A−1 and

(
1997

−1999

)
is a direction of minimum magnification by A.
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1.5 EXERCISE 1.9

(a) Define absolute error, relative error and state their relationship.

(b) Show how the relative error builds up in multiplication and division.

(c) Explain forward and backward error analysis using the example of approx-
imating

cosx ≈ f(x) = 1− x2/2.

(d) Considering the binary floating point representation of numbers, explain
the concept of the hidden bit.

(e) Explain the biased representation of the exponent in binary floating point
representation.

(f) How are 0, ∞ and NaN represented?

(g) How are the numbers 2k for positive and negative k represented?

Solution

(a) Let x be a real numbers not dangerously close to overflow or underflow
and let x∗ denote the floating-point representation of x. The absolute error
ε is

x∗ = x+ ε

and the relative error δ is

x∗ = x(1 + δ) = x+ xδ.

Thus
ε = xδ or, if x 6= 0, δ =

ε

x
.

(b) Let
x∗1 = x1(1 + δ1)

x∗2 = x2(1 + δ2)

Then
x∗1 × x∗2 = x1x2(1 + δ1)(1 + δ2)

= x1x2(1 + δ1 + δ2 + δ1δ2)

The term δ1δ2 can be neglected, since it is small. The worst case is, when
δ1 and δ2 have the same sign, i.e. the relative error in x∗1 × x∗2 is no worse
than |δ1|+ |δ2|.
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Division can be easily analyzed in the same way by using the binomial
expansion to write

1

x∗2
=

1

x2
(1 + δ2)−1 =

1

x2
(1− δ2 + . . .).

Then
x∗1/x

∗
2 = x1/x2(1 + δ1)(1− δ2 + . . .)

= x1/x2(1 + δ1 − δ2 − δ1δ2 + . . .)

The worst case is, when δ1 and δ2 have the opposite sign. Again, the
relative error in x∗1/x

∗
2 is no worse than |δ1|+ |δ2|.

(c) Forward error analysis examines how perturbations of the input propa-
gate. Backward error analysis examines the question: How much error in
input would be required to explain all output error? It assumes that an
approximate solution to a problem is good if it is the exact solution to a
nearby problem. For the example cosx ≈ f(x) = 1 − x2/2, the forward
error is simply f(x) − cosx. For the backward error we need to find x∗

such that cosx∗ = f(x). In particular,

x∗ = arccos f(x).

(d) If the floating point number is normalized, that is the leading digit is non-
zero, then it has to be 1, when binary representation is used. It therefore
does not need to be stored, as long as a special representation for 0 is
used.

(e) The representation of the exponent uses a biased representation. In the
case of single precision, where the exponent is stored in 8 bits, the bias is
127 (for double precision it is 1023). What this means is if k is the value of
the exponent bits interpreted as an unsigned integer, then the exponent of
the floating point number is k−127. This is called the unbiased exponent
to distinguish form the biased exponent k.

(f) The unbiased exponents range between emin−1 = −127 and emax+1 = 128
in single precision. The numbers emin − 1 = −127 and emax + 1 = 128
are used to encode special quantities. More precisely 0 is encoded with
the exponent being emin − 1 and the significand being entirely zero. ∞
is encoded with the exponent being emax + 1 and the significand being
entirely zero. NaN is encoded with the exponent being emax + 1 and the
significand being nonzero.

(g) Since the numbers 2k are powers of two, the significand has to have the
value 1. However, this is the hidden bit and thus the stored significand is
entirely zero. The unbiased exponent k has to be stored in biased form
which is k + 127 in single precision.
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1.6 EXERCISE 1.11

(a) Define absolute error, relative error and state their relationship.

(b) Explain absolute error test and relative error test and give examples of
circumstances when they are unsuitable. What is a mixed error test?

(c) Explain loss of significance.

(d) Let x1 = 3.0001 be the true value approximated by x∗1 = 3.0001+10−5 and
x2 = −3.0000 be the true value approximated by x∗2 = −3.0000 + 10−5.
State the absolute and relative errors in x∗1 and x∗2. Calculate the absolute
error and relative error in approximating x1 + x2 by x∗1 + x∗2. How many
times bigger is the relative error in the sum compared to the relative error
in x∗1 and x∗2?

(e) Let

f(x) = x−
√
x2 + 1, x ≥ 0. (1.1)

Explain when and why loss of significance occurs in the evaluation of f .

(f) Derive an alternative formula for evaluating f which avoids loss of sig-
nificance.

(g) Test your alternative by considering a decimal precision p = 16 and
x = 108. What answer does your alternative formula give compared to
the original formula?

(h) Explain condition and condition number in general terms.

(i) Derive the condition number for evaluating a differentiable function f at
a point x, i.e. calculating f(x).

(j) Considering f(x) as defined in (1.1), find the smallest interval in which the
condition number lies. Is the problem well-conditioned or ill-conditioned?

Solution

(a) Let x be a real numbers not dangerously close to overflow or underflow
and let x∗ denote the floating-point representation of x. The absolute error
ε is

x∗ = x+ ε

and the relative error δ is

x∗ = x(1 + δ) = x+ xδ.

Thus
ε = xδ or, if x 6= 0, δ =

ε

x
.
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(b) There are two forms of error testing, one using a target absolute accuracy
εt, the other using a target relative error δt. In the first case the calculation
is terminated when

|εn| ≤ εt, (1.2)

where εn denotes the absolute error in the n-th approximation. In the
second case the calculation is terminated when

|εn| ≤ δt|xn|. (1.3)

Both methods are flawed under certain circumstances. If x is large, say
1020, and u = 10−16, then εn is never likely to be much less than 104,
so condition (1.2) is unlikely to be satisfied if εt is chosen too small even
when the process converges. On the other hand, if |xn| is very small, then
δt|xn| may underflow and test (1.3) may never be satisfied (unless the
error becomes exactly zero).

As (1.2) is useful when (1.3) is not, and vice versa, so-called mixed error
tests have been developed. In the simplest form of such a test, a target
error ηt is prescribed and the calculation is terminated when the condition

|εn| ≤ ηt(1 + |xn|)

is satisfied. If |xn| is small ηt may be thought of as target absolute error,
or if |xn| is large ηt may be thought of as target relative error.

(c) Loss of significance occurs whenever two similar numbers of equal sign are
subtracted (or two similar numbers of opposite sign are added), and is a
major cause of inaccuracy in floating-point algorithms. The relative error
increases, since the result of the calculation is small.

(d) For x1 = 3.0001 with x∗1 = 3.0001 + 10−5 the absolute error is ε1 = 10−5

and the relative error is δ1 = 10−5/3.0001. For x2 = −3.0000 with x∗2 =
−3.0000 + 10−5 the absolute error is ε2 = 10−5 and the relative error is
δ2 = −10−5/3.0000. For the sum we have

x1 + x2 = 0.0001
x∗1 + x∗2 = 0.0001 + 2 ∗ 10−5.

Thus the absolute error in approximating x1 + x2 by x∗1 + x∗2 is x1 + x2−
(x∗1+x∗2) = −2∗10−5 and the relative error is −2∗10−5/0.0001 = −2∗10−1

which is bigger than the relative error in x1 and x2 by a factor of 104.

(e) For

f(x) = x−
√
x2 + 1

loss of significance occurs when x becomes large enough such that the
representation of x2 +1 equals x2, that is (x2 +1)∗ = x2. In this case f(x)
evaluates to 0.
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(f) An alternative way of evaluating f is

f(x) = x−
√
x2 + 1× x+

√
x2 + 1

x+
√
x2 + 1

=
x2 − (x2 + 1)

x+
√
x2 + 1

=
−1

x+
√
x2 + 1

(g) For decimal precision p = 16 (108)2 + 1 is represented as 1016. Thus in its
original formulation f(108) is zero. In the alternative formula we have

f(108) =
−1

108 +
√

(108)2 + 1
≈ −0.5 ∗ 10−8.

(h) The condition of a problem is a qualitative or quantitative statement
about how easy it is to solve irrespective of the algorithm used to solve
it. The condition number of a numerical problem measures the asymp-
totically worst case of how much the outcome can change in proportion
to small perturbations in the input data. A problem with a low condi-
tion number is said to be well-conditioned, while a problem with a high
condition number is said to be ill-conditioned.

(i) For the problem of evaluating a differentiable function f at a point x, i.e.
calculating f(x), let x̂ be a point close to x. The condition number K is
defined as the relative change in f(x) caused by a unit relative change in
x.

K(x) = lim
x̂→x

∣∣∣∣f(x)− f(x̂)

f(x)

∣∣∣∣ ∣∣∣∣ x

x− x̂

∣∣∣∣
=

∣∣∣∣ x

f(x)

∣∣∣∣ lim
x̂→x

∣∣∣∣f(x)− f(x̂)

x− x̂

∣∣∣∣
=

∣∣∣∣xf ′(x)

f(x)

∣∣∣∣
(j) For f(x) = x−

√
x2 + 1 we have

K(x) =

∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ =

∣∣∣∣x(1− x(x2 + 1)−1/2)

x−
√
x2 + 1

∣∣∣∣
=

∣∣∣∣∣
x√
x2+1

(√
x2 + 1− x

)
x−
√
x2 + 1

∣∣∣∣∣ =
x√

x2 + 1
,

since x ≥ 0. Since the denominator
√
x2 + 1 ≥ x, K(x) lies in the interval

[0, 1] for all x. Thus the problem is well-conditioned.
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Linear Systems
Exercises

2.1 EXERCISE 2.1

Implement backward substitution.

Solution

function [x]=Backward(A,b)
% Solves the upper triangular system of equations Ax = b
% A input argument, square upper triangular matrix
% b input argument
% x solution

[n,m]=size(A); % finding the size of A
if n6= m

disp('input is not a square matrix');
return;

end
if size(b,1) 6= n

disp('input dimensions do not match');
return;

end
x = zeros(n,1); % initialise x to the same dimension
if abs(A(n,n)) > 1e−12 % not comparing to zero because of possible

% rounding errors
x(n) = b(n)/A(n,n); % solve for the last element of x

else
disp('input singular'); % A is singular if any of the diagonal

% elements are zero
return;

end
for k=n:−1:1 % the loop considers one row after the other backwards

if abs(A(k,k))>1e−12 % not comparing to zero because of possible
% rounding errors
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temp = 0;
for j=n:−1:k+1

temp = temp + A(k,j) * x(j); % Multiply the elements of
% the k−th row of A after the
% diagonal by theelements of x
% already calculated

end
x(k) = (b(k)−temp)/A(k,k); % solve for the k−th element of x

else
disp('input singular'); % A is singular if any of the diagonal

% elements are zero
return;

end
end

2.2 EXERCISE 2.3

By using pivoting if necessary an LU factorization is calculated of an n × n
matrix A, where L has ones on the diagonal and the moduli of all off-diagonal
elements do not exceed 1. Let α be the largest moduli of the elements of A.
Prove by induction that elements of U satisfy |Ui,j | ≤ 2i−1α. Construct 2× 2
and 3× 3 nonzero matrices A that give |U2,2| = 2α and |U3,3| = 4α.

Solution

For i = 1 we have |U1,j | = |A1,j | ≤ α. Assume the assertion is true for all

i ≤ k − 1. Now uTk is the k-th row of A−
∑k−1
i=1 liu

T
i or written as vectors

uk =

 Ak,1
...

Ak,n

− k−1∑
i=1

Lk,iui.

For each element of uk we can write

|Uk,j | = |Ak,j −
k−1∑
i=1

Lk,iUi,j | ≤ |Ak,j |+
k−1∑
i=1

2i−1α ≤ (1 +
2k−1 − 1

2− 1
)α = 2k−1α

Examples for n = 2 and n = 3 are(
α α
−α α

)
=

(
1 0
−1 1

)(
α α
0 2α

)
and  α 1

2α α

α 0 −α
α α −α

 =

 1 0 0
1 1 0
1 −1 1


 α 1

2α α

0 − 1
2α −2α

0 0 −4α


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2.3 EXERCISE 2.5

Let A be a real nonsingular n × n matrix that has the factorization A =
LU , where L is lower triangular with ones on its diagonal and U is upper
triangular. Show that for k = 1, . . . , n the first k rows of U span the same
subspace as the first k rows of A. Show also that the first k columns of A are
in the k-dimensional subspace spanned by the first k columns of L.

Solution

Since A0 = A and uT1 is the first row of A0, the first row of U and A are
identical and span the same space. We continue with induction on k. Since
uTk is the k-th row of Ak−1 = A −

∑k−1
i=1 liu

T
i , it is the k-th row of A minus∑k−1

i=1 Lk,iu
T
i . We see immediately that the k-th row of A is a linear combina-

tion of the first k rows of U . Furthermore, the sum lies in the space spanned
by the first k − 1 rows of U which is the same as the space spanned by the
first k− 1 rows of A. Thus uTk is a linear combination of the first k rows of A.

The argument for the columns of L and A is very similar apart from the
scaling. We do not have the case where there happens to be a zero at the
(k, k) entry, since A is nonsingular.

2.4 EXERCISE 2.7

Let a1,a2 and a3 denote the columns of the matrix

A =

 3 6 −1
−6 −6 1
2 1 −1


Using the Gram-Schmidt procedure generate orthonormal vectors q1,q2 and
q3 and real numbers Ri,j such that ai =

∑i
j=1Ri,jqj, i = 1, 2, 3. Thus express

A as the product A = QR, where Q is orthogonal and R is upper triangular.

Solution

Firstly,

a1 =

 3
−6
2

 , a2 =

 6
−6
1

 , a3 =

 −1
1
−1

 .

The length of a1 is ‖a1‖ =
√

9 + 36 + 4 = 7 and thus q1 = 1
7a1 and R1,1 = 7.

The scalar product of q1 with a2 is 1
7 (18 + 36 + 2) = 8 = R1,2. Hence

w = a2 − 〈q1,a2〉q1 =

 6
−6
1

− 8

7

 3
−6
2

 =
3

7

 6
2
−3


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The length of w is ‖w‖ = 3
7

√
36 + 4 + 9 = 3 = R2,2 and

q2 =
1

7

 6
2
−3


We have

〈q1,a3〉 = 1
7 (−3− 6− 2) = − 11

7 = R1,3

〈q2,a3〉 = 1
7 (−6 + 2 + 3) = − 1

7 = R2,3

Now

w = a3 − 〈q1,a3〉q1 − 〈q2,a3〉q2 =

 −1
1
−1

+
11

49

 3
−6
2

+
1

49

 6
2
−3


= − 5

49

 2
3
6


The length of w is ‖w‖ = 5

49

√
4 + 9 + 36 = 5

7 = R3,3 and

q3 = −1

7

 2
3
6


Hence the factorization is given by

A = QR =
1

7

 3 6 −2
−6 2 −3
2 −3 −6


 7 8 − 11

7

0 3 − 1
7

0 0 5
7

 .

2.5 EXERCISE 2.9

Calculate the QR factorization of the matrix in exercise 2.7 by using two
Householder rotations. Show that for a general m× n matrix A the computa-
tional cost is O(mn2).

Solution

Since there is a level of choice within Householder rotations, several solutions
are listed here. The first choice of u is a1 + ‖a1‖e1 where e1 denotes the first
unit vector.

u =

 3
−6
2

+
√

9 + 36 + 4

 1
0
0

 =

 10
−6
2


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We have ‖u‖2 = 100 + 36 + 4 = 140 and 10
−6
2

( 10 −6 2
)

=

 100 −60 20
−60 36 −12
20 −12 4


The first Householder transformation is

I − 2
uuT

‖u‖2
= I − 2

140

 100 −60 20
−60 36 −12
20 −12 4

 =
1

35

 −15 −30 −10
30 17 6
−10 6 33


Multiplying this with A we arrive at

B =
1

35

 −15 −30 −10
30 17 6
−10 6 33

 3 6 −1
−6 −6 1
2 1 −1

 =

 −7 −8 − 11
7

0 12
5 − 19

35

0 − 9
5 − 17

35


The next choice for u is

u =

 0
12
5

− 9
5

+
1

5

√
144 + 81

 0
1
0

 =

 0
27
5

− 9
5


we have ‖u‖2 = (729 + 81)/25 = 810/25 = 162/5 and

1

25

 0
27
−9

( 0 27 −9
)

=
1

25

 0 0 0
0 729 −243
0 −243 81


The second Householder transformation is

I − 2
uuT

‖u‖
= I − 2 ∗ 5

25 ∗ 162

 0 0 0
0 729 −243
0 −243 81

 =
1

5

 5 0 0
0 −4 3
0 3 4


Multiplying this with B we arrive at

R = 1
5

 5 0 0
0 −4 3
0 3 4


 −7 −8 − 11

7

0 12
5 − 19

35

0 − 9
5 − 17

35


=

 −7 −8 11
7

0 −3 − 1
7

0 0 − 5
7


If instead we choose

u =

 0
12
5

− 9
5

− 1

5

√
144 + 81

 0
1
0

 =

 0
− 3

5

− 9
5

 ,
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we have ‖u‖2 = (9 + 81)/25 = 90/25 = 18/5 and

1

25

 0
−3
−9

( 0 −3 −9
)

=
1

25

 0 0 0
0 9 27
0 27 81


The second Householder transformation is then

I − 2
uuT

‖u‖
= I − 2 ∗ 5

25 ∗ 18

 0 0 0
0 9 27
0 27 81

 =
1

5

 5 0 0
0 4 −3
0 −3 −4


Multiplying this with B we arrive at

R = 1
5

 5 0 0
0 4 −3
0 −3 −4


 −7 −8 − 11

7

0 12
5 − 19

35

0 − 9
5 − 17

35


=

 −7 −8 11
7

0 3 − 1
7

0 0 − 5
7


If we choose in the first place

u =

 3
−6
2

−√9 + 36 + 4

 1
0
0

 =

 −4
−6
2


We have ‖u‖2 = 16 + 36 + 4 = 56 and −4

−6
2

( −4 −6 2
)

=

 16 24 −8
24 36 −12
−8 −12 4


The first Householder transformation is

I − 2
uuT

‖u‖2
= I − 2

56

 16 24 −8
24 36 −12
−8 −12 4

 =
1

7

 3 −6 2
−6 −2 3
2 3 6


Multiplying this with A we arrive at

B =
1

7

 3 −6 2
−6 −2 3
2 3 6

 3 6 −1
−6 −6 1
2 1 −1

 =

 7 8 − 11
7

0 −3 1
7

0 0 5
7


and only one Householder transformation is necessary.

It requires O(nm) operations to form wT := uTA and A− 2
‖u‖2uw. This

is done n− 1 times. Thus the overall number of operations is O(mn2).
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2.6 EXERCISE 2.11

Starting with an arbitrary x(0) the sequence x(k), k = 1, 2, . . . , is calculated by 1 1 1
0 1 1
0 0 1

x(k+1) +

 0 0 0
α 0 0
γ β 0

x(k) = b

in order to solve the linear system 1 1 1
α 1 1
γ β 1

x = b,

where α, β, γ ∈ R are constant. Find all values for α, β, γ such that the se-
quence converges for every x(0) and b. What happens when α = β = γ = −1
and α = β = 0?

Solution

The iteration matrix is given by

H = −

 1 1 1
0 1 1
0 0 1

−1 0 0 0
α 0 0
γ β 0


= −

 1 −1 0
0 1 −1
0 0 1

 0 0 0
α 0 0
γ β 0


=

 α 0 0
−α+ γ β 0
−γ −β 0


The eigenvalues of H are given by

(α− λ)(β − λ)(−λ) = 0.

Hence the eigenvalues are α, β and zero. Therefore we need for convergence
|α| < 1 and |β| < 1.

For α = β = γ = −1 the iteration matrix becomes

H =

 −1 0 0
0 −1 0
1 1 0

 .

In this case

H2 =

 1 0 0
0 1 0
−1 −1 0

 = −H.
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Hence Hk = (−1)k−1H. The sequence then alternates for any starting vector
x(0) between Hx(0) and −Hx(0).

For α = β = 0 the iteration matrix becomes

H =

 0 0 0
γ 0 0
−γ 0 0

 .

We have H2 = 0 and thus the sequence has to converge after only two itera-
tions.

2.7 EXERCISE 2.13

The Gauss–Seidel method is used to solve Ax = b, where

A =

(
100 11
9 1

)
.

Find the eigenvalues of the iteration matrix. Then show that with relaxation
the spectral radius can be reduced by nearly a factor of 3. In addition show that
after one iterations with the relaxed method the error ‖x(k) − x∗‖ is reduced
by more than a factor of 3. Estimate the number of iterations the original
Gauss–Seidel would need to achieve a similar decrease in the error.

Solution

The Gauss-Seidel iteration matrix is

H =

(
100 0
9 1

)−1(
0 11
0 0

)
=

1

100

(
0 11
0 −99

)
.

The eigenvalues are 0 and − 99
100 and thus the spectral radius is 0.99. To find

out how many iterations are needed to reduce the error by a factor of 3, we

need to find k such that (0.99)k < 1/3. This means k > log 1/3
log 0.99 ≈ 109.3. Thus

110 iterations are needed.
The iteration matrix of the relaxation method is given by Hω = (1−ω)I+

ωH. The optimal ω minimizes {|1−ω+ωλ| : λ = 0,− 99
100}. Setting −(1−ω−

99
100ω) = 1 − ω gives ω = 200

299 . The eigenvalues of the relaxation method are
then − 99

299 and 99
299 . The relaxed spectral radius is 99

299 = 100
299 ×

99
100 = 1

2.99
99
100

and thus the spectral radius is reduced by a factor of 2.99, nearly 3.
One iteration reduces the error by 99

299 ≈ 0.331, which is a factor of ap-
proximately 3. Thus relaxation is very effective in this case.
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2.8 EXERCISE 2.15

Use the standard form of the conjugate gradient method to solve 1 0 0
0 2 0
0 0 3

x =

 1
1
1


starting with x(0) = 0. Show that the residuals r(0), r(1) and r(2) are mutu-
ally orthogonal and that the search directions d(0),d(1) and d(2) are mutually
conjugate and that x(3) is the solution.

Solution

The intermediate values are as follows:

ω(0) =
1

2
, d(0) = r(0) =

 1
1
1

 ,

x(1) =
1

2

 1
1
1

 , g(1) =

 − 1
2

0
1
2

 , β(1) =
1

6
,

d(1) =
1

6

 4
1
−2

 , ω(1) =
3

5
,

x(2) =
1

10

 9
6
3

 , g(2) =
1

10

 −1
2
−1

 , β(2) =
3

25
,

d(2) =
1

50

 9
−9
3

 , ω(2) =
5

9
.

The method converges with

x(3) =

 1
1
2
1
3

 .

It is easy to check the orthogonality and conjugacy properties.

2.9 EXERCISE 2.17

Let A be the bidiagonal n× n matrix

A =


λ 1

. . .
. . .

λ 1
λ

 .
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Find an explicit expression for Ak. Letting n = 3, the sequence x(k+1), k =
0, 1, 2, . . . , is generated by the power method x(k+1) = Ax(k)/‖x(k)‖, starting
with some x(0) ∈ R3. From the expression for Ak deduce that the second and
third component of x(k) tend to zero as k tend to infinity. Further show that
this implies Ax(k) − λx(k) tends to zero.

Solution

The matrix A is in the Jordan canonical form. Let

B =


0 1

. . .
. . .

0 1
0

 .

We can express Ak as

Ak = [λI +B]k

= λkI +

(
k
1

)
λk−1B +

(
k
2

)
λk−2B2 + . . .+

(
k
k

)
Bk.

With every multiplication by B the superdiagonal consisting of 1 is moving
up by 1. Thus Bj is the zero matrix except for the j-th superdiagonal where
all entries are 1. Hence for k ≥ n

Ak =


λk

(
k
1

)
λk−1 · · ·

(
k

n− 1

)
λk−n+1

0
. . .

. . .
...

...
. . .

(
k
1

)
λk−1

0 · · · 0 λk


.

For n = 3 this becomes

Ak =

 λk kλk−1 k(k − 1)λk−2/2

0 λk kλk−1

0 0 λk

 .

Now

x(k) =
Ax(k−1)

‖Ax(k−1)‖
=

A Ax(k−2)

‖Ax(k−2)‖

‖A Ax(k−2)

‖Ax(k−2)‖‖
=

A2x(k−2)

‖A2x(k−2)‖
= . . . =

Akx(0)

‖Akx(0)‖
.

The second and third component of Akx(0) are of magnitude kλk−1 and λk

while ‖Akx(0)‖ is of magnitude k2λk. Therefore the second and third compo-
nent of Akx(0) tend to zero as k tends to infinity.
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For the last part of the question

Ax(k) − λx(k) = Bx(k)

and the resultant vector has the second component of x(k) as its first com-
ponent, the third component of x(k) as its second component and zero as its
third component. Thus this tends to zero as k tends to infinity.

2.10 EXERCISE 2.19

The symmetric matrix

A =

 3 2 4
2 0 2
4 2 3


has the eigenvector v = (2, 1, 2)T . Use a Householder reflection to find an
orthogonal matrix S such that Sv is a multiple of the first standard unit vector
e1. Calculate SAS. The resultant matrix is suitable for deflation and hence
identify the remaining eigenvalues and eigenvectors.

Solution

Since  3 2 4
2 0 2
4 2 3

 2
1
2

 =

 16
8
16

 = 8

 2
1
2

 ,

the given eigenvector has the eigenvalue λ1 = 8. ‖v‖ =
√

4 + 1 + 4 = 3. One
choice u for the Householder reflection is then

u = v + 3e1 =

 5
1
2

 ,

where the sign was chosen to avoid loss of significance. We have ‖u‖2 =
25 + 1 + 4 = 30 and 5

1
2

( 5 1 2
)

=

 25 5 10
5 1 2

10 2 4

 .

The Householder reflection is then given by

S = I − 2

30

 25 5 10
5 1 2

10 2 4

 =
1

15

 −10 −5 −10
−5 14 −2
−10 −2 11

 .
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The deflated matrix is

SAS =
1

152

 −10 −5 −10
−5 14 −2
−10 −2 11

 3 2 4
2 0 2
4 2 3

 −10 −5 −10
−5 14 −2
−10 −2 11


=

 8 0 0
0 −1 0
0 0 −1

 .

The other eigenvalues are therefore a double eigenvalue −1. The corresponding
eigenvectors of SAS are e2 and e3, but these equal also Svi for i = 2, 3. Thus
v2 and v3 are found by multiplying by S. The eigenvectors are

v2 =
1

15

 −5
14
−2

 and v3 =
1

15

 −10
−2
11

 .

Note that v2 and v3 span an eigenspace and thus any multiple or linear
combination of v2 and v3 is also an eigenvector.

If we choose the other sign when forming u, the solution is as follows.

u = v − 3e1 =

 −1
1
2

 .

We have ‖u‖2 = 1 + 1 + 4 = 6 and −1
1
2

( −1 1 2
)

=

 1 −1 −2
−1 1 2
−2 2 4

 .

The Householder reflection is then given by

S = I − 2

6

 1 −1 −2
−1 1 2
−2 2 4

 =
1

3

 2 1 2
1 2 −2
2 −2 −1

 .

The deflated matrix is

SAS =
1

32

 2 1 2
1 2 −2
2 −2 −1

 3 2 4
2 0 2
4 2 3

 2 1 2
1 2 −2
2 −2 −1


=

 8 0 0
0 −1 0
0 0 −1

 .

As before the eigenvectors of SAS are e2 and e3, but these equal also Svi for
i = 2, 3. Thus v2 and v3 are found by multiplying by S which is different to
before. The eigenvectors are

v2 =

 1
2
−2

 and v3 =

 2
−2
−1

 .
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2.11 EXERCISE 2.21

(a) Explain the technique of splitting for solving the linear system Ax = b
iteratively where A is an n× n, non-singular matrix. Define the iteration
matrix H and state the property it has to satisfy to ensure convergence.

(b) Define the Gauss-Seidel and Jacobi iterations and state their iteration
matrices respectively.

(c) Describe relaxation and consider briefly the cases when the relaxation pa-
rameter ω equals 0 and 1.

(d) Show how the the iteration matrix Hω of the relaxed method is related to
the iteration matrix H of the original method and thus how the eigenvalues
are related. How should ω be chosen?

(e) We now consider the tridiagonal matrix A with diagonal elements Ai,i = 1
and off-diagonal elements Ai,i−1 = Ai,i+1 = 1/4. Calculate the iteration
matrices H of the Jacobi method and Hω of the relaxed Jacobi method.

(f) The eigenvectors of both H and Hω are v1, . . . ,vn where the i-th compo-
nent of vk is given by (vk)i = sin πik

n+1 . Calculate the eigenvalues of H by
evaluating Hvk (Hint: sin(x± y) = sinx cos y ± cosx sin y).

(g) Using the formula for the eigenvalues of Hω derived earlier state the eigen-
values of Hω and show that the relaxed method converges for 0 < ω ≤ 4/3.

Solution

(a) We can rewrite Ax = b in the form

(A−B)x = −Bx + b,

where the matrix B is chosen in such a way that A − B is non-singular
and the system (A−B)x = y is easily solved for any right hand side y. A
simple iterative scheme starts with an estimate x(0) ∈ Rn of the solution
and generates the sequence x(k), k = 1, 2, . . . , by solving

(A−B)x(k+1) = −Bx(k) + b.

Let x∗ solve Ax = b. It also satisfies (A−B)x∗ = −Bx∗+b. Subtracting
this equation from the above equation gives

(A−B)(x(k+1) − x∗) = −B(x(k) − x∗).

We denote x(k) − x∗ by e(k). It is the error in the k-th iteration. Since
A−B is non-singular, we can write

e(k+1) = −(A−B)−1Be(k).
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The matrix H := −(A−B)−1B is known as the iteration matrix. We have
limk→∞ x(k) = x∗ for all x(0) ∈ Rn if and only if ρ(H) < 1. That is all
eigenvalues of H must have modulus less than 1.

(b) Jacobi method We choose A − B = D, the diagonal part of A, or in
other words we let B = L+ U . The iteration step is given by

Dx(k+1) = −(L+ U)x(k) + b.

The iteration matrix is −D−1(L+ U) = −D−1(A−D).

Gauss–Seidel method We set A − B = L + D, the lower triangular
portion of A, or in other words B = U . The sequence x(k), k = 1, . . . ,
is generated by

(L+D)x(k+1) = −Ux(k) + b.

The iteration matrix is −(L+D)−1U .

(c) For relaxation, we first calculate (A − B)x̃(k+1) = −Bx(k) + b as an
intermediate value and then let

x(k+1) = ωx̃(k+1) + (1− ω)x(k)

for k = 0, 1, . . ., where ω ∈ R is called the relaxation parameter. Of course
ω = 1 corresponds to the original method without relaxation. The choice
ω = 0 does not make sense, since in this case x(k+1) = x(k).

(d) Since x̃(k+1) = −(A−B)−1Bx(k) + (A−B)−1b, let c = (A−B)−1b, the
relaxation iteration matrix Hω can then be deduced from

x(k+1) = ωx̃(k+1) + (1− ω)x(k) = ωHx(k) + (1− ω)x(k) + ωc

as
Hω = ωH + (1− ω)I.

It follows that an eigenvalue λ of H is related to an eigenvalue λω of
Hω by λω = ωλ + (1 − ω). The best choice for ω would be to minimize
max{|ωλi + (1−ω)|, i = 1, . . . , n} where λ1, . . . , λn are the eigenvalues of
H.

(e) The iteration matrix of the Jacobi method is H = −D−1(A−D) and has
entries Hi,i = 0 and off-diagonal elements Hi,i−1 = Hi,i+1 = −1/4. All the
other entries are zero. The iteration matrix of the relaxed Jacobi method
is Hω = ωH + (1 − ω)I and has entries Hi,i = (1 − ω) and off-diagonal
elements Hi,i−1 = Hi,i+1 = −ω/4. All the other entries are zero.
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(f) The i-th component of Hvk is given by

(Hvk)i = −1

4
sin

π(i− 1)k

n+ 1
− 1

4
sin

π(i+ 1)k

n+ 1

= −1

4
(sin

πik

n+ 1
cos

πk

n+ 1
− cos

πik

n+ 1
sin

πk

n+ 1
)

−1

4
(sin

πik

n+ 1
cos

πk

n+ 1
+ cos

πik

n+ 1
sin

πk

n+ 1
)

= −1

2
cos

πk

n+ 1
sin

πik

n+ 1
,

where we used sin(x ± y) = sinx cos y ± cosx sin y with x = πik
n+1 and

y = πk
n+1 . Thus the eigenvalues are λk = − 1

2 cos πk
n+1 , k = 1, . . . , n.

(g) The eigenvalues of the relaxed method are

λωk = −ω 1

2
cos

πk

n+ 1
+ 1− ω = 1− ω(1 +

1

2
cos

πk

n+ 1
).

For convergence these have to lie in the interval (−1, 1). That means
ω(1 + 1

2 cos πk
n+1 ) has to lie in the interval (0, 2). Since cos πk

n+1 ∈ (−1, 1)

for k = 1, . . . , n, we have 1 + 1
2 cos πk

n+1 ∈ (1/2, 3/2). From this we can
deduce 0 < ω ≤ 3/4.

2.12 EXERCISE 2.23

(a) Given an n×n matrix A, define the concept of LU factorization and how
it can be used to solve the system of equations Ax = b.

(b) State two other applications of the LU factorization.

(c) Describe the algorithm to obtain an LU factorization. How many opera-
tions does this generally require?

(d) Describe the concept of pivoting in the context of solving the system of
equations Ax = b by LU factorization.

(e) How does the algorithm need to be adjusted if in the process we encounter
a column with all entries equal to zero? What does it mean if there is a
column consisting entirely of zeros in the process?

(f) How can sparsity be exploited in the LU factorization?

(g) Calculate the LU factorization with pivoting of the matrix

A =


2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

 .
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Solution

(a) The LU factorization factorizes A into a lower triangular matrix L (i.e.
Li,j = 0 for i < j) and a upper triangular matrix U (i.e. Ui,j = 0 for
i > j) such that is A = LU . The linear system then becomes L(Ux) = b,
which we decompose into Ly = b and Ux = y. Both these systems can
be solved easily by back substitution.

(b) Other applications of the LU factorization are

• Calculation of determinant:

detA = (detL)(detU) = (

n∏
k=1

Lk,k)(
n∏
k=1

Uk,k).

• Non-singularity testing: A = LU is non-singular if and only if all the
diagonal elements of L and U are nonzero.

• Calculating the inverse: The inverse of triangular matrices can be
easily calculated directly. Subsequently A−1 = U−1L−1.

(c) The algorithm of the LU factorization is as follows:

(1) Set A0 := A and k = 1.

(2) Set uTk to the k-th row of Ak−1 and lk to the k-th column of Ak−1,
scaled so that Lk,k = 1.

(3) Calculate Ak := Ak−1−lkuTk before incrementing k by 1 and returning
to step (2) if k ≤ n.

The full LU accumulation requires O(n3) operations.

(d) Pivoting means having obtained Ak−1, we exchange two rows of Ak−1 so
that the element of largest magnitude in the k-th column is in the pivotal
position (k, k), i.e.

|(Ak−1)k,k| ≥ |(Ak−1)j,k|, j = 1, . . . , n.

Since the exchange of rows can be regarded as the pre-multiplication of
the relevant matrix by a permutation matrix, we need to do the same
exchange in the portion of L that has been formed already (i.e. the first
k − 1 columns):

Anew
k−1 = PAk−1 = PA− P

k−1∑
j=1

lju
T
j = PA−

k−1∑
j=1

P lju
T
j .

We also need to record the permutations of rows to solve for b.
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(e) If the entire k-th column of Ak−1 is zero, we let lk be the k-th unit vector
while uTk is the k-th row of Ak−1 as before. With this choice we retain
that the matrix lku

T
k has the same k-th row and column as Ak−1. If a

column consisting entirely of zeros is encountered in the process, it means
that the matrix A is singular and the solution is not unique.

(f) If A is a sparse matrix, then all leading zeros in the rows of A to the left
of the diagonal are inherited by L and all the leading zeros in the columns
of A above the diagonal are inherited by U. Therefore we should use the
freedom to exchange rows and columns in a preliminary calculation so
that many of the zero elements are leading zero elements in rows and
columns.

(g) Starting from

A =


2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8


we swap the first and third row to obtain

A0 =


8 7 9 5
4 3 3 1
2 1 1 0
6 7 9 8

 .

The first row of U is the first row of A0, uT1 = (8, 7, 9, 5), and the first
column of L is the first column of A0 scaled by 1/8, lT1 = (1, 1/2, 1/4, 3/4).
Then

l1u
T
1 =


1
1
2
1
4
3
4

( 8 7 9 5
)

=


8 7 9 5
4 7

2
9
2

5
2

2 7
4

9
4

5
4

6 21
4

27
4

5
4

 .

We then calculate

A1 = A0 − l1u
T
1 =


0 0 0 0
0 − 1

2 − 3
2 − 3

2

0 − 3
4 − 5

4 − 5
4

0 7
4

9
4

17
4

 .

Since the leading nonzero coefficient in the fourth row is the largest in the
second column we swap the second and fourth row:

A1 =


0 0 0 0
0 7

4
9
4

17
4

0 − 3
4 − 5

4 − 5
4

0 − 1
2 − 3

2 − 3
2

 .
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We have to do the same swap on the portion of L which has already been
calculated, lT1 = (1, 3/4, 1/4, 1/2).

The second row of U is the second row of A1, uT2 = (0, 7
4 ,

9
4 ,

17
4 ), and

the second column of L is the second column of A1 scaled by 4
7 , lT2 =

(0, 1,− 3
7 ,−

2
7 ). Then

l2u
T
2 =


0
1
− 3

7

− 2
7

( 0 7
4

9
4

17
4

)
=


0 0 0 0
0 7

4
9
4

17
4

0 − 3
4 − 27

28 − 51
28

0 − 1
2 − 9

14 − 17
14

 .

We then calculate

A2 = A1 − l2u
T
2 =


0 0 0 0
0 0 0 0
0 0 − 35

28 + 27
28 − 35

28 + 51
28

0 0 − 21
14 + 9

14 − 21
14 + 17

14



=


0 0 0 0
0 0 0 0
0 0 − 2

7
4
7

0 0 − 6
7 − 2

7

 .

Since the leading nonzero coefficient in the fourth row is the largest in the
third column we swap the third and fourth row:

A2 =


0 0 0 0
0 0 0 0
0 0 − 6

7 − 2
7

0 0 − 2
7

4
7

 .

We have to do the same swap on the portions of L which have already
been calculated, lT1 = (1, 3/4, 1/2, 1/4) and lT2 = (0, 1,− 2

7 ,−
3
7 ).

The third row of U is the third row of A2, uT3 = (0, 0,− 6
7 ,−

2
7 ), and the

third column of L is the third column of A2 scaled by − 7
6 , lT3 = (0, 0, 1, 1

3 ).
Then

l3u
T
3 =


0
0
1
1
3

( 0 0 − 6
7 − 2

7

)
=


0 0 0 0
0 0 0 0
0 0 − 6

7 − 2
7

0 0 − 2
7 − 2

21

 .

We then calculate

A3 = A2 − l3u
T
3 =


0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 12
21 + 2

21

 =


0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 2
3

 .
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The fourth row of U is the fourth row of A3, uT4 = (0, 0, 0, 2
3 ), and the

fourth column of L is lT4 = (0, 0, 0, 1). Summarizing we have

L =


1 0 0 0
3
4 1 0 0
1
2 − 2

7 1 0
1
4 − 3

7
1
3 1

 and U =


8 7 9 5
0 7

4
9
4

17
4

0 0 − 6
7 − 2

7

0 0 0 2
3

 .

To check (but this is not required) we may multiply

LU =


1 0 0 0
3
4 1 0 0
1
2 − 2

7 1 0
1
4 − 3

7
1
3 1




8 7 9 5
0 7

4
9
4

17
4

0 0 − 6
7 − 2

7

0 0 0 2
3

 =


8 7 9 5
6 7 9 8
4 3 3 1
2 1 1 0

 ,

which is the original matrix after swapping first and third row,the second
and fourth row and then third and fourth row.

2.13 EXERCISE 2.25

(a) Explain the technique of splitting for solving the linear system Ax = b
iteratively where A is an n× n, non-singular matrix. Define the iteration
matrix H and state the property it has to satisfy to ensure convergence.

(b) Define what it means for a matrix to be positive definite. Show that all
diagonal elements of a positive definite matrix are positive.

(c) State the Householder-John theorem and explain how it can be used to
design iterative methods for solving Ax = b.

(d) Let the iteration matrix H have a real eigenvector v with real eigenvalue
λ. Show that the condition of the Householder-John theorem implies that
|λ| < 1.

(e) We write A in the form A = L + D + U , where L is the subdiagonal (or
strictly lower triangular), D is the diagonal and U is the superdiagonal
(or strictly upper triangular) portion of A. The following iterative scheme
is suggested

(L+ ωD)x(k+1) = −[(1− ω)D + U ]x(k) + b.

Using the Householder-John theorem, for which values of ω does the
scheme converge in the case when A is symmetric and positive definite.

Solution

(a) We can rewrite Ax = b in the form

(A−B)x = −Bx + b,
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where the matrix B is chosen in such a way that A − B is non-singular
and the system (A−B)x = y is easily solved for any right hand side y. A
simple iterative scheme starts with an estimate x(0) ∈ Rn of the solution
and generates the sequence x(k), k = 1, 2, . . . , by solving

(A−B)x(k+1) = −Bx(k) + b.

Let x∗ solve Ax = b. It also satisfies (A−B)x∗ = −Bx∗+b. Subtracting
this equation from the above equation gives

(A−B)(x(k+1) − x∗) = −B(x(k) − x∗).

We denote x(k) − x∗ by e(k). It is the error in the k-th iteration. Since
A−B is non-singular, we can write

e(k+1) = −(A−B)−1Be(k).

The matrix H := −(A−B)−1B is known as the iteration matrix. We have
limk→∞ x(k) = x∗ for all x(0) ∈ Rn if and only if ρ(H) < 1. That is all
eigenvalues of H must have modulus less than 1.

(b) A matrix A is said to be positive definite if for all x 6= 0 we have xTAx > 0.
Denoting the i-th standard vector by ei, we have Ai,i = eTi Aei > 0. Thus
we can deduce that each diagonal element of A is positive.

(c) We have

Theorem (Householder–John theorem). If A and B are real matrices
such that both A and A − B − BT are symmetric and positive definite,
then the spectral radius of H = −(A−B)−1B is strictly less than one.

Thus if A is symmetric and positive definite B can be chosen in such a
way that A−B −BT is also positive definite.

(d) From Hv = λv we deduce −Bv = λ(A − B)v. λ cannot equal one since
otherwise A would map v to zero and be singular. Multiplying by vT from
then left, we deduce −vTBv = λvT (A−B)v or in other words

vTBv =
λ

λ− 1
vTAv.

Since the positive definiteness of A and A − B − BT implies vTAv > 0
and vT (A − B − BT )v > 0, we can insert the above result in the latter
inequality and deduce

0 < vTAv − vTBv − vTBTv =

(
1− λ

λ− 1
− λ

λ− 1

)
vTAv

=
−1− λ
λ− 1

vTAv.
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Since vTAv > 0, for the equality to hold the fraction has to be greater
than zero. Multiplying the denominator and numerator of the fraction by
λ + 1 shows that the fraction equals −(λ + 1)2/(λ2 − 1). Thus we must
have |λ| < 1.

(e) For the scheme

(L+ ωD)x(k+1) = −[(1− ω)D + U ]x(k) + b.

we have A − B = L + ωD and B = (1 − ω)D + U . Now since A is
symmetric, U = LT and thus B = (1 − ω)D + LT . The matrix A is
symmetric and positive definite, hence we have to consider the matrix
A−B −BT = L+ ωD − (1− ω)DT − L = (2ω − 1)D, since DT = D. It
has been shown above that all diagonal elements of D are positive, since
it is the diagonal portion of the positive definite matrix A. Therefore the
matrix (2ω − 1)D is positive definite if and only if 2ω > 1.

2.14 EXERCISE 2.27

(a) Use Gaussian Elimination with backwards substitution to solve the linear
system:

5x1+ 10x2+ 9x3 = 4
10x1+ 26x2+ 26x3 = 10
15x1+ 54x2+ 66x3 = 27

(b) How is the LU factorization defined, if A is an n × n square matrix and
how can it be used to solve the system of equations Ax = b?

(c) Describe the algorithm to obtain an LU factorization.

(d) By which factor does the number of operations increase to obtain an LU
factorization if n is increased by a factor of 10?

(e) What needs to be done if during Gaussian Elimination or LU factorization
a zero entry is encountered on the diagonal? Distinguish two different
cases.

(f) Describe scaled and total pivoting. Explain why it is necessary under cer-
tain circumstances.

(g) Perform an LU factorization on the matrix arising from the system of
equations given in (a).
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Solution

(a) For the Gaussian Elimination we write the system of equations in the
form  5 10 9 4

10 26 26 10
15 54 66 27


Subtracting two times the first row from the second row and three times
the first row from the third row gives 5 10 9 4

0 6 8 2
0 24 39 15


Now subtracting four times the third row from the second row gives 5 10 9 4

0 6 8 2
0 0 7 7


Considering the last equation when back-substituting immediately gives
x3 = 1. Inserting this in the second equation yields

6x2 + 8 = 2

and therefore x2 = −1. Finally inserting x2 and x3 in the first equation

5x1 − 10 + 9 = 4

and hence x1 = 1.

(b) The LU factorization factorizes A into a lower triangular matrix L (i.e.
Li,j = 0 for i < j) and a upper triangular matrix U (i.e. Ui,j = 0 for
i > j) such that is A = LU . The linear system then becomes L(Ux) = b,
which we decompose into Ly = b and Ux = y. Both these systems can
be solved easily by back substitution.

(c) The algorithm of the LU factorization is as follows:

(1) Set A0 := A and k = 1.

(2) Set the k-th row of U , uTk , to the k-th row of Ak−1 and the k-th
column of L, lk, to the k-th column of Ak−1, scaled so that Lk,k = 1.

(3) Calculate Ak := Ak−1−lkuTk before incrementing k by 1 and returning
to step (2) if k ≤ n.

(d) The full LU factorization requires O(n3) operations. Thus if n increases
by a factor of 10, The number of operations increases by a factor of 1000.



Linear Systems Exercises � 31

(e) If during Gaussian Elimination or LU factorization a zero entry is encoun-
tered on the diagonal (e.g. the (j, j) position), the row cannot be used to
introduce zeros in that column below the diagonal. If there are non-zero
entries in this column below the diagonal, a row with a nonzero entry is
exchanged with the j-th row and this row is used to introduce zeros and
as j-th row of U , uTj . If there are only zeros on the diagonal and below
the diagonal, then the system of equations has no unique solution. The
variable xj can be freely chosen. The LU factorization algorithm lets lj
be the j-th unit vector and uTj the current j-th row.

(f) Scaled pivoting considers the size of a coefficient relative to the other
coefficients in the same equation. We can calculate the relative size by
dividing each coefficient by the largest absolute value in that row. The
row with the largest scaled coefficient is moved into the pivotal position.

In total (or complete or maximal) pivoting the pivotal equation and piv-
otal variable are selected by choosing the largest (unscaled) coefficient of
any of the remaining variables. This is moved into the (k, k) position. This
can involve exchange of columns as well as rows.

A small (compared to the other values) non-zero number as pivotal value
is not suitable, since the row gets scaled by the reciprocal of this number.
This can make small errors bigger which can accumulate introducing a
large error in the end result.

(g) The matrix arising from the system of equations is

A =

 5 10 9
10 26 26
15 54 66

 .

Thus

l1 =

 1
2
3

 ,uT1 =
(

5 10 9
)
, l1u

T
1 =

 5 10 9
10 20 18
15 30 27


The next matrix to consider is

A− l1u
T
1 =

 0 0 0
0 6 8
0 24 39


Hence

l2 =

 0
1
4

 ,uT2 =
(

0 6 8
)
, l2u

T
2 =

 0 0 0
0 6 8
0 24 32

 .
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The last columns of L and U are

l3 =

 0
0
1

 ,uT3 =
(

0 0 7
)
.

Summarizing

L =

 1 0 0
2 1 0
3 4 1

 , U =

 5 10 9
0 6 8
0 0 7

 .

Note that we arrive at the same upper triangular matrix as when per-
forming Gaussian Elimination. (Calculating L from the already found U
is also an acceptable solution.)

2.15 EXERCISE 2.29

(a) Explain the technique of splitting for solving the linear system Ax = b
iteratively where A is an n× n, non-singular matrix. Define the iteration
matrix H and state the property it has to satisfy to ensure convergence.

(b) Define the Gauss-Seidel and Jacobi iterations and state their iteration
matrices respectively.

(c) Let

A =


2

√
3

2
1
2√

3
2 2

√
3

2

1
2

√
3

2 2


Derive the iteration matrix for the Jacobi iterations and state the eigen-
value equation. Check that the numbers −3/4, 1/4, 1/2 satisfy the eigen-
value equation and thus are the eigenvalues of the iteration matrix.

(d) The matrix given in (c) is positive definite. State the Householder-John
theorem and apply it to show that the Gauss-Seidel iterations for this
matrix converge.

(e) Describe relaxation and show how the the iteration matrix Hω of the re-
laxed method is related to the iteration matrix H of the original method
and thus how the eigenvalues are related. How should ω be chosen?

(f) For the eigenvalues given in (c) calculate the best choice of ω and the
eigenvalues of the relaxed method.
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Solution

(a) We can rewrite Ax = b in the form

(A−B)x = −Bx + b,

where the matrix B is chosen in such a way that A − B is non-singular
and the system (A−B)x = y is easily solved for any right hand side y. A
simple iterative scheme starts with an estimate x(0) ∈ Rn of the solution
and generates the sequence x(k), k = 1, 2, . . . , by solving

(A−B)x(k+1) = −Bx(k) + b.

Let x∗ solve Ax = b. It also satisfies (A−B)x∗ = −Bx∗+b. Subtracting
this equation from the above equation gives

(A−B)(x(k+1) − x∗) = −B(x(k) − x∗).

We denote x(k) − x∗ by e(k). It is the error in the k-th iteration. Since
A−B is non-singular, we can write

e(k+1) = −(A−B)−1Be(k).

The matrix H := −(A−B)−1B is known as the iteration matrix. We have
limk→∞ x(k) = x∗ for all x(0) ∈ Rn if and only if ρ(H) < 1. That is all
eigenvalues of H must have modulus less than 1.

(b) Jacobi method We choose A − B = D, the diagonal part of A, or in
other words we let B = L+ U . The iteration step is given by

Dx(k+1) = −(L+ U)x(k) + b.

The iteration matrix is −D−1(L+ U) = −D−1(A−D).

Gauss–Seidel method We set A − B = L + D, the lower triangular
portion of A, or in other words B = U . The sequence x(k), k = 1, . . . ,
is generated by

(L+D)x(k+1) = −Ux(k) + b.

The iteration matrix is −(L+D)−1U .

(c) For

A =


2

√
3

2
1
2√

3
2 2

√
3

2

1
2

√
3

2 2


the iteration matrix is given by

H = −1

2


0

√
3

2
1
2√

3
2 0

√
3

2

1
2

√
3

2 0

 = −


0

√
3

4
1
4√

3
4 0

√
3

4

1
4

√
3

4 0

 .
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The eigenvalue equation is

(−λ)3 −
√

3

4

√
3

4

1

4
− 1

4

√
3

4

√
3

4
− 1

4
(−λ)

1

4
−
√

3

4

√
3

4
(−λ)−

√
3

4

√
3

4
(−λ)

= −λ3 +
7

16
λ− 3

32
= 0.

For −3/4, 1/4, 1/2 we have

−(−3

4
)3 +

7

16
(−3

4
)− 3

32
=

27

43
− 21

43
− 3

32
= 0,

−(
1

4
)3 +

7

16
(
1

4
)− 3

32
= − 1

43
+

7

43
− 3

32
= 0,

−(
1

2
)3 +

7

16
(
1

2
)− 3

32
= −1

8
+

7

32
− 3

32
= 0.

Thus −3/4,−1/4, 1/2 are the eigenvalues and the method converges.

(d)

Theorem (Householder–John theorem). If A and B are real matrices
such that both A and A − B − BT are symmetric and positive definite,
then the spectral radius of H = −(A−B)−1B is strictly less than one.

The matrix A is symmetric and positive definite. For Gauss-Seidel B = U
and since A is symmetric, BT = UT = L. Thus A−B−BT = D and this
is symmetric and positive definite, since the diagonal entries are positive.

(e) For relaxation, we first calculate (A − B)x̃(k+1) = −Bx(k) + b as an
intermediate value and then let

x(k+1) = ωx̃(k+1) + (1− ω)x(k)

for k = 0, 1, . . ., where ω ∈ R is called the relaxation parameter.

Since x̃(k+1) = −(A−B)−1Bx(k) + (A−B)−1b, let c = (A−B)−1b, the
relaxation iteration matrix Hω can then be deduced from

x(k+1) = ωx̃(k+1) + (1− ω)x(k) = ωHx(k) + (1− ω)x(k) + ωc

as
Hω = ωH + (1− ω)I.

It follows that an eigenvalue λ of H is related to an eigenvalue λω of
Hω by λω = ωλ + (1 − ω). The best choice for ω would be to minimize
max{|ωλi + (1−ω)|, i = 1, . . . , n} where λ1, . . . , λn are the eigenvalues of
H.
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(f) With relaxation the eigenvalues become

− 3
4ω + 1− ω = 1− 7

4ω

1
4ω + 1− ω = 1− 3

4ω

1
2ω + 1− ω = 1− 1

2ω

The best choice of ω is when 1− 1
2ω = −(1− 7

4ω) which gives ω = 8
9 . In

this case the eigenvalues are −5/9, 1/3, 5/9.





C H A P T E R 3

Interpolation and
Approximation Theory
Exercises

3.1 EXERCISE 3.1

Let the function values f(0), f(1), f(2) and f(3) be given. We want to estimate

f(−1), f ′(1) and

∫ 3

0

f(x)dx.

To this end, we let p be the cubic polynomial that interpolates these function
values, and then approximate by

p(−1), p′(1) and

∫ 3

0

p(x)dx.

Using the Lagrange formula show that every approximation is a linear com-
bination of the function values with constant coefficients and calculate these
coefficients. Show that the approximations are exact if f is any cubic polyno-
mial.
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Solution

Let f0 = f(0), f1 = f(1), f2 = f(2) and f3 = f(3). Then

p(x) =

3∑
k=0

3∏
l=0

l 6=k

x− xl
xk − xl

fk

= f0(1− x) 1
2 (2− x) 1

3 (3− x)

+f1x(2− x) 1
2 (3− x)

+f2
1
2x(x− 1)(3− x)

+f3
1
3x

1
2 (x− 1)(x− 2)

= 1
6f0(−x3 + 6x2 − 11x+ 6)

+ 1
2f1(x3 − 5x2 + 6x)

+ 1
2f2(−x3 + 4x2 − 3x)

+ 1
6f3(x3 − 3x2 + 2x).

With these results we have

p(−1) = 1
6f0(−(−1)3 + 6(−1)2 − 11(−1) + 6)

+ 1
2f1((−1)3 − 5(−1)2 + 6(−1))

+ 1
2f2(−(−1)3 + 4(−1)2 − 3(−1))

+ 1
6f3((−1)3 − 3(−1)2 + 2(−1))

= 4f0 − 6f1 + 4f2 − f3.

The derivative is

p′(x) = 1
6f0(−3x2 + 12x− 11)

+ 1
2f1(3x2 − 10x+ 6)

+ 1
2f2(−3x2 + 8x− 3)

+ 1
6f3(3x2 − 6x+ 2).

with p′(1) = − 1
3f0 − 1

2f1 + f2 − 1
6f3.

The integral is∫ 3

0

p(x) = [ 1
6f0(− 1

4x
4 + 2x3 − 11

2 x
2 + 6x)

+ 1
2f1( 1

4x
4 − 5

3x
3 + 3x2)

+ 1
2f2(− 1

4x
4 + 4

3x
3 − 3

2x
2)

+ 1
6f3( 1

4x
4 − x3 + x2) ]

3
0

= 3
8f0 + 9

8f1 + 9
8f2 + 3

8f3.

Note the symmetry in the last formula.
For the last part of the question let f(x) = ax3 + bx2 + cx+d be a general
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cubic polynomial. Then f0 = d, f1 = a+ b+ c+ d, f2 = 8a+ 4b+ 2c+ d and
f3 = 27a+ 9b+ 3c+ d. Inserting these in the above formula we have

p(−1) = 4d− 6(a+ b+ c+ d) + 4(8a+ 4b+ 2c+ d)− (27a+ 9b+ 3c+ d)

= −a+ b− c+ d = f(−1),

p′(1) = − 1
3d−

1
2 (a+ b+ c+ d) + (8a+ 4b+ 2c+ d)− 1

6 (27a+ 9b+ 3c+ d)

= 3a+ 2b+ c = f ′(1)∫ 3

0

p(x)dx = 3
8d+ 9

8 (a+ b+ c+ d) + 9
8 (8a+ 4b+ 2c+ d)

+ 3
8 (27a+ 9b+ 3c+ d)

= 81
4 a+ 9b+ 9

2c+ 3d =
∫ 3

0
f(x)dx

and thus the formulae are correct for any cubic polynomial.

3.2 EXERCISE 3.3

Let f be a real valued function and let p be the polynomial of degree at most n
that interpolates f at the pairwise distinct points x0, x1, . . . , xn. Furthermore,
let x be any real number that is not an interpolation point. Deduce for the
error at x

f(x)− p(x) = f [x0, . . . , xn, x]

n∏
j=0

(x− xj).

(Hint: Use the definition for the divided difference f [x0, . . . , xn, x].)

Solution

By definition f [x0, . . . , xn, x] is the leading coefficient of the polynomial inter-
polating f at x0, x1, . . . , xn and x. This coefficient is given by

f [x0, . . . , xn, x] =

n∑
k=0

f(xk)

 n∏
l=0

l 6=k

1

xk − xl

 1

xk − x
+ f(x)

n∏
l=0

1

x− xl
.

Multiplying both sides by
∏n
l=0(x− xl) gives

f [x0, . . . , xn, x]

n∏
l=0

(x−xl) =

n∑
k=0

f(xk)

− n∏
l=0

l 6=k

x− xl
xk − xl

+f(x) = −p(x)+f(x).
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3.3 EXERCISE 3.5

Given f, g ∈ C[a, b], let h := fg. Prove by induction that the divided differences
of h satisfy the relation

h[x0, . . . , xn] =

n∑
j=0

f [x0, . . . , xj ]g[xj , . . . , xn].

By using the representation as derivatives of the differences and by letting the
points x0, . . . , xn coincide, deduce the Leibniz formula for the n-th derivative
of a product of two functions.

Solution

For n = 0 we have h[x0] = h(x0) = f(x0)g(x0) = f [x0]g[x0]. We may assume
the assertion is true for any n + 1 pairwise distinct points and hence for the
n+ 2 points x0, . . . , xn+1

h[x0, . . . , xn+1] =
1

xn+1 − x0
(h[x1, . . . , xn+1]− h[x0, . . . , xn])

=
1

xn+1 − x0

n+1∑
j=1

f [x1, . . . , xj ]g[xj , . . . , xn+1]

−
n∑
j=0

f [x0, . . . , xj ]g[xj , . . . , xn]


=

1

xn+1 − x0

n∑
j=0

(f [x1, . . . , xj+1]g[xj+1, . . . , xn+1]

−f [x0, . . . , xj ]g[xj , . . . , xn])

Now f [x1, . . . , xj+1] = (xj+1 − x0)f [x0, . . . , xj+1] + f [x0, . . . , xj ] and
g[xj , . . . , xn] = g[xj+1, . . . , xn+1]− (xn+1−xj)g[xj , . . . , xn+1]. Inserting these
into the sum, we obtain

h[x0, . . . , xn+1] =
1

xn+1 − x0

n∑
j=0

((xj+1 − x0)f [x0, . . . , xj+1]g[xj+1, . . . , xn+1]

+f [x0, . . . , xj ]g[xj+1, . . . , xn+1]− f [x0, . . . , xj ]g[xj+1, . . . , xn+1]

+(xn+1 − xj)f [x0, . . . , xj ]g[xj , . . . , xn+1])

=

n+1∑
j=0

f [x0, . . . , xj ]g[xj , . . . , xn+1]

If x0, . . . , xn coincide in ξ we have

h[x0, . . . , xn] =
1

n!
h(n)(ξ) =

n∑
j=0

1

j!
f (j)(ξ)

1

(n− j)!
g(n−j)(ξ).
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3.4 EXERCISE 3.7

The functions p0, p1, p2, . . . are generated by the Rodrigues formula

pn(x) = ex
dn

dxn
(xne−x), x ∈ R+.

Show that these functions are polynomials and prove by integration by parts
that for every p ∈ Pn−1[x] we have the orthogonality condition 〈pn, p〉 = 0
with respect to the scalar product given by

〈f, g〉 :=

∫ ∞
0

e−xf(x)g(x)dx.

Thus these polynomials are the Laguerre polynomials. Calculate p3, p4 and p5

from Rodrigues formula.

Solution

The k-th derivative, k ≤ n, of xne−x is given by

dk

dxk
(xne−x) = xn−kqk(x)e−x

for some polynomial qk of degree k. This is obviously true for k = 0 with
q0(x) ≡ 1. Assuming this is true for k < n, we can write for k + 1

dk+1

dxk+1
(xne−x) =

d

dx
(xn−kqk(x)e−x)

= (n− k)xn−k−1qk(x)e−x + xn−kq′k(x)e−x − xn−kqk(x)e−x

= xn−k−1((n− k)qk(x) + xq′k(x)− xqk(x))e−x.

Thus qk+1 = (n− k)qk(x) + xq′k(x)− xqk(x). Letting k = n, it follows that

pn(x) = ex
dn

dxn
(xne−x) = exxn−nqn(x)e−x = qn(x)

is a polynomial of degree n.
Lets look at the scalar product now:

〈pn, p〉 =

∫ ∞
0

e−xex
dn

dxn
(xne−x)p(x)dx

=

[
dn−1

dxn−1
(xne−x)p(x)

]∞
0

−
∫ ∞

0

dn−1

dxn−1
(xne−x)p′(x)dx

=
[
xqn−1(x)e−xp(x)

]∞
0
−
∫ ∞

0

dn−1

dxn−1
(xne−x)p′(x)dx

= −
∫ ∞

0

dn−1

dxn−1
(xne−x)p′(x)dx

= . . .

= ±
[
xnq0(x)e−xp(n−1)(x)

]∞
0
∓
∫ ∞

0

xnq0(x)e−xp(n)(x)dx
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Now p ∈ Pn−1[x] and thus its n-th derivative vanishes and hence the scalar
product is zero.

The explicit polynomials are

p3(x) = −x3 + 9x2 − 18x+ 6

p4(x) = x4 − 16x3 + 72x2 − 96x+ 24

p5(x) = −x5 + 25x4 − 200x3 + 600x2 − 600x+ 120.

3.5 EXERCISE 3.9

Express the divided difference f [0, 1, 2, 3] in the form

L(f) = f [0, 1, 2, 3] =
1

2

∫ 3

0

K(θ)f ′′′(θ)dθ,

assuming that f ∈ C3[0, 3]. Sketch the kernel function K(θ) for θ ∈ [0, 3]. By
integrating K(θ) and using the mean value theorem show that

f [0, 1, 2, 3] =
1

6
f ′′′(ξ)

for some point ξ ∈ [0, 3].

Solution

Set

L(f) = f [0, 1, 2, 3] = −1

6
f(0) +

1

2
f(1)− 1

2
f(2) +

1

6
f(3).

The Peano kernel is then given by

K(θ) = L[(x− θ)2
+]

= −1

6
(0− θ)2

+ +
1

2
(1− θ)2

+ −
1

2
(2− θ)2

+ +
1

6
(3− θ)2

+

=



1

6
θ2 0 ≤ θ ≤ 1

−1

3
θ2 + θ − 1

2
1 ≤ θ ≤ 2

1

6
θ2 − θ +

3

2
2 ≤ θ ≤ 3

0 θ ≤ 0 or θ ≥ 3.

Thus K(θ) is piecewise quadratic, continuous and K(θ) ≥ 0. Thus we can
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Figure 3.1 Plot of the piecewise quadratic Peano kernel

use the result of Theorem 3.11. The value of the integral of K(θ) over [0, 3] is∫ 3

0

K(θ)dθ =

∫ 1

0

1

6
θ2dθ +

∫ 2

1

−1

3
θ2 + θ − 1

2
dθ +

∫ 3

2

1

6
θ2 − θ +

3

2
dθ

=

[
1

18
θ3

]1

0

+

[
−1

9
θ3 +

1

2
θ2 − 1

2
θ

]2

1

+

[
1

18
θ3 − 1

2
θ2 +

3

2
θ

]3

2

=
1

18
+

(
−8

9
+ 2− 1

)
−
(
−1

9
+

1

2
− 1

2

)
+

(
3

2
− 9

2
+

9

2

)
−
(

4

9
− 2 + 3

)
=

6

18
=

1

3
.

Therefore f [0, 1, 2, 4] = 1
2

1
3f
′′′(ξ) = 1

6f
′′′(ξ) for some ξ ∈ [0, 3].

3.6 EXERCISE 3.11

Let S be the set of cubic splines with knots xi = ih for i = 0, . . . , n, where
h = 1/n. An inexperienced user obtains an approximation to a twice differen-
tiable function f by satisfying the conditions s′(0) = f ′(0), s′′(0) = f ′′(0) and
s(xi) = f(xi), i = 0, . . . , n. Show how the changes in the first derivatives s′(xi)
propagate if s′(0) is increased by a small perturbation ε, i.e. s′(0) = f ′(0) + ε,
but the remaining data remain the same.

Solution

The change is itself a cubic spline which satisfies s(xi) = 0, i = 0, . . . , n,
s′′(0) = 0 and s′(0) = ε. A cubic spline which vanishes at xi, i = 0, . . . , n, has
the derivatives

s′(xi) = α(−2 +
√

3)i + β(−2−
√

3)i,
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where α and β are determined by the remaining two conditions s′′(0) = 0 and
s′(0) = ε. The latter yields α+ β = s′(x0) = s′(0) = ε. The second derivative
at the point x0 = 0 takes the value

4

h
(s′(x0) + s′(x1)) =

4

h
(α+ β + α(−2 +

√
3) + β(−2−

√
3)) = 0.

From this β = (−1 +
√

3)/(1 +
√

3)α follows. Using α+ β = ε, it follows that

α =

√
3 + 1

2
√

3
ε and β =

√
3− 1

2
√

3
ε.

Thus the change in the derivatives at x0, . . . , xn is

s′(xi) =

√
3 + 1

2
√

3
ε(−2 +

√
3)i +

√
3− 1

2
√

3
ε(−2−

√
3)i,

Now −2 +
√

3 ≈ −0.27, so this component decreases with increasing i. How-
ever, −2−

√
3 ≈ −3.7 and this component increases with increasing i. More-

over, because it is negative the first derivative changes sign at every knot.
Thus the change begins to oscillate widely with increasing i.

3.7 EXERCISE 3.13

(a) Let Qk, k = 0, 1, . . ., be a set of polynomials orthogonal with respect
to some inner product 〈·, ·〉 in the interval [a, b]. Let f be a continuous
function in [a, b]. Write explicitly the least-squares polynomial approxima-
tion to f by a polynomial of degree n in terms of the polynomials Qk,
k = 0, 1, . . ..

(b) Let an inner product be defined by the formula

〈g, h〉 =

∫ 1

−1

(1− x2)−1/2g(x)h(x)dx.

The orthogonal polynomials are the Chebyshev polynomials of the first kind
given by Qk(x) = cos(k arccosx), k ≥ 0. Using the substitution x = cos θ,
calculate the inner products 〈Qk, Qk〉 for k ≥ 0. (Hint: 2 cos2 x = 1 +
cos 2x.)

(c) For the inner product given above and the Chebyshev polynomials calculate
the inner products 〈Qk, f〉 for k ≥ 0, k 6= 1, where f is given by f(x) =
(1− x2)1/2. (Hint: cosx sin y = 1

2 [sin(x+ y)− sin(x− y)].)

(d) Now for k = 1, calculate the inner product 〈Q1, f〉.

(e) Thus for even n write the least squares polynomial approximation to f as
linear combination of the Chebyshev polynomials with the correct coeffi-
cients.
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Solution

(a) Let p =
∑n
k=0 ckQk be a general n-th degree polynomial expressed in the

basis Qk. The least-squares approximation minimizes the inner product
〈f − p, f − p〉. Because of orthogonality the inner product simplifies to

〈f − p, f − p〉 =

〈
f −

n∑
k=0

ckQk, f −
n∑
j=0

cjQj

〉

= 〈f, f〉 − 2

n∑
k=0

ck〈f,Qk〉+

n∑
k=0

c2k〈Qk, Qk〉.

This is a quadratic function in the cks and we can minimize it to find
optimal values for the cks. Differentiating with respect to ck gives

∂

∂ck
〈f − p, f − p〉 = −2〈Qk, f〉+ 2ck〈Qk, Qk〉, k = 0, . . . , n.

Setting the gradient to zero, we obtain

ck =
〈Qk, f〉
〈Qk, Qk〉

and thus

p =

n∑
k=0

〈Qk, f〉
〈Qk, Qk〉

Qk.

(b) The inner product 〈Qk, Qk〉 for k 6= 0 is given by

〈Qk, Qk〉 =

∫ 1

−1

(1−x2)−1/2Q2
k(x)dx =

∫ 1

−1

(1−x2)−1/2 cos2(k arccosx)dx.

Using the substitution x = cos θ with dx
dθ = sin θ the range of integration

changes to [0, π]. Therefore

〈Qk, Qk〉 =

∫ π

0

(1− cos2 θ)−1/2 cos2 kθ sin θdθ

=

∫ π

0

cos2 kθdθ

=

∫ π

0

1

2
(1 + cos 2kθ)dθ =

π

2
,

since the second term in the sum integrates to 0.

For k = 0 we have

〈Q0, Q0〉 =

∫ 1

−1

(1− x2)−1/2Q2
0(x)dx =

∫ 1

−1

(1− x2)−1/2dx.

Using the same substitution we obtain

〈Q0, Q0〉 =

∫ π

0

(1− cos2 θ)−1/2 sin θdθ = π.
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(c) For f(x) = (1− x2)1/2 the inner product is

〈Qk, f〉 =

∫ 1

−1

(1− x2)−1/2(1− x2)1/2Qk(x)dx

=

∫ 1

−1

Qk(x)dx =

∫ 1

−1

cos(k arccosx)dx.

Again substituting x = cos θ gives

〈Qk, f〉 =

∫ π

0

cos kθ sin θdθ

=
1

2

∫ π

0

[sin(k + 1)θ − sin(k − 1)θ]dθ

=
1

2

[
− 1

k + 1
cos(k + 1)θ +

1

k − 1
cos(k − 1)θ

]π
0

For odd k this evaluates to zero, since the expression in the square bracket
evaluates to the same for θ = π and θ = 0, because we always have an
even multiple of π. For even k, π is multiplied by an odd number and thus

〈Qk, f〉 =
1

k + 1
− 1

k − 1
+

1

k + 1
− 1

k − 1
=
−2

k2 − 1
.

(d) For k = 1, the above calculation would lead to a division by zero. In this
case sin(k − 1)θ = 0 and thus

〈Q1, f〉 =
1

2

∫ π

0

sin 2θdθ = 0

(e) To summarize the linear least squares approximation to f(x) = (1−x2)1/2

is

2

π
Q0(x) +

n/2∑
m=1

−4

π(4m2 − 1)
Q2m(x).

3.8 EXERCISE 3.15

(a) Define the divided difference of degree n, f [x0, x1, . . . , xn]. What is the
divided difference of degree zero?

(b) Prove the recursive formula for divided differences

f [x0, x1, . . . , xk, xn+1] =
f [x1, . . . , xn+1]− f [x0, . . . , xn]

xn+1 − x0
.
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(c) By considering the polynomials p, q ∈ Pk[x] that interpolate f
at x0, . . . , xi−1, xi+1, . . . , xn and x0, . . . , xj−1, xj+1, . . . , xn respectively,
where i 6= j, construct a polynomial r, which interpolates f at x0, . . . , xn.
For the constructed r show that r(xk) = f(xk) for k = 0, . . . , n.

(d) Deduce that, for any i 6= j, we have

f [x0, . . . , xn] =
f [x0, . . . , xi−1, xi+1, . . . , xn]− f [x0, . . . , xj−1, xj+1, . . . , xn]

xj − xi
.

(e) Calculate the divided difference table for x0 = 0, x1 = 1, x2 = 2 and x3 = 3
with data values f0 = 0, f1 = 1, f2 = 8 and f3 = 27.

(f) Using the above formula, calculate the divided differences f [x0, x2],
f [x0, x2, x3] and f [x0, x1, x3].

Solution

(a) Let p interpolate f0, f1, . . . , fn. The polynomial p is unique and the coeffi-
cient of xn in p is called the divided difference of degree n: f [x0, x1, . . . , xn].
The divided difference of degree zero is the coefficient of the zero degree
interpolating polynomial, i.e. a constant. Hence f [xi] = f(xi).

(b) The recursive formula for the divided differences can be proven in the
following way: Let p, q ∈ Pn[x] be the polynomials that interpolate f at
x0, . . . , xn and x1, . . . , xn+1 respectively. Let

r(x) :=
(x− x0)q(x) + (xn+1 − x)p(x)

xn+1 − x0
∈ Pn+1[x].

It can be easily seen that r(xi) = f(xi) for i = 0, . . . , n + 1. Hence r is
the unique interpolating polynomial of degree n+ 1 and the coefficient of
xn+1 in r is given by the formula

f [x0, x1, . . . , xn, xn+1] =
f [x1, . . . , xn+1]− f [x0, . . . , xn]

xn+1 − x0
.

(c) For polynomials p, q that interpolate f at x0, . . . , xi−1, xi+1, . . . , xn and
x0, . . . , xj−1, xj+1, . . . , xn respectively, we let

r(x) :=
x− xi
xj − xi

p(x) +
xj − x
xj − xi

q(x).

For x = xi, we have

r(xi) :=
xi − xi
xj − xi

p(xi) +
xj − xi
xj − xi

q(xi) = q(xi) = f(xi).
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For x = xj , we have

r(xj) :=
xj − xi
xj − xi

p(xj) +
xj − xj
xj − xi

q(xj) = p(xj) = f(xj).

For x = xk, k 6= i, k 6= j, we have

r(xk) :=
xk − xi
xj − xi

p(xk)+
xj − xk
xj − xi

q(xk) =
xk − xi + xj − xk

xj − xi
f(xk) = f(xk).

Thus r as above interpolates f at x0, . . . , xn.

(d) Since r interpolates f at x0, . . . , xn, f [x0, . . . , xn] is the coefficient of xn

in r. This however is the difference of the coefficient of xn−1 in p and
in q divided by xj − xi. On the other hand the coefficient of xn−1 in
p and in q are the divided differences f [x0, . . . , xi−1, xi+1, . . . , xn] and
f [x0, . . . , xj−1, xj+1, . . . , xn]. It follows that

f [x0, . . . , xn] =
f [x0, . . . , xi−1, xi+1, . . . , xn]− f [x0, . . . , xj−1, xj+1, . . . , xn]

xj − xi
.

For i = 0 and j = n, we recover the original recursive formula

f [x0, x1, . . . , xn, xn+1] =
f [x1, . . . , xn+1]− f [x0, . . . , xn]

xn+1 − x0
.

(e) The divided difference table for x0 = 0, x1 = 1, x2 = 2 and x3 = 3 with
data values f0 = 0, f1 = 1, f2 = 8 and f3 = 27 is

f [x0]

f [x1]

f [x2]

f [x3]

↘
↗
↘
↗
↘
↗

f [x0, x1]

f [x1, x2]

f [x2, x3]

↘
↗
↘
↗

f [x0, x1, x2]

f [x1, x2, x3]

↘
↗ f [x0, x1, x2, x3].

0

1

8

27

↘
↗
↘
↗
↘
↗

1−0
1−0 = 1

8−1
2−1 = 7

27−8
3−2 = 19

↘
↗
↘
↗

7−1
2−0 = 3

19−7
3−1 = 6

↘
↗

6− 3

3− 0
= 1.

(f) Using

f [x0, . . . , xn] =
f [x0, . . . , xi−1, xi+1, . . . , xn]− f [x0, . . . , xj−1, xj+1, . . . , xn]

xj − xi
,
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we first let n = 2, i = 2 and j = 1 to get

f [x0, x1, x2] =
f [x0, x1]− f [x0, x2]

x1 − x2
.

Solving for f [x0, x2], we arrive at

f [x0, x2] = f [x0, x1]− (x1 − x2)f [x0, x1, x2] = 1− (1− 2)3 = 4.

Next we let n = 3, i = 3 and j = 1 to get

f [x0, x1, x2, x3] =
f [x0, x1, x2]− f [x0, x2, x3]

x1 − x3
.

Solving for f [x0, x2, x3], we arrive at

f [x0, x2, x3] = f [x0, x1, x2]− (x1 − x3)f [x0, x1, x2, x3] = 3− (1− 3)1 = 5.

Last we let n = 3, i = 3 and j = 2 to get

f [x0, x1, x2, x3] =
f [x0, x1, x2]− f [x0, x1, x3]

x2 − x3
.

Solving for f [x0, x1, x3], we arrive at

f [x0, x1, x3] = f [x0, x1, x2]− (x2 − x3)f [x0, x1, x2, x3] = 3− (2− 3)1 = 4.

3.9 EXERCISE 3.17

(a) Given a set of real values f0, f1, . . . , fn at real data points x0, x1, . . . , xn,
give a formula for the Lagrange cardinal polynomials and state their prop-
erties. Write the polynomial interpolant in the Lagrange form.

(b) How many operations are necessary to evaluate the polynomial interpolant
in the Lagrange form at x?

(c) Prove that the polynomial interpolant is unique.

(d) Using the Lagrange form of interpolation, compute the polynomial p(x)
that interpolates the data x0 = 0, x1 = 1, x2 = 2 and f0 = 1, f1 = 2,
f2 = 3. What is the degree of p(x)?

(e) What is a divided difference and a divided difference table and for which
form of interpolant is it used? Give the formula for the interpolant. How
many operations are necessary to evaluate the polynomial in this form?

(f) Prove the relation used in a divided difference table.

(g) Write down the divided difference table for the interpolation problem given
in (d). How does it change with the additional data f3 = 5 at x3 = 3.
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Solution

(a) For k = 0, . . . , n the Lagrange cardinal polynomials are

Lk(x) :=

n∏
l=0

l 6=k

x− xl
xk − xl

, x ∈ R.

The k-th Lagrange cardinal polynomial is monic and unique, has degree
n and has the property Lk(xk) = 1 and Lk(xj) = 0 for j 6= k. The
polynomial interpolant is given by

p(x) =
n∑
k=0

fkLk(x) =

n∑
k=0

fk

n∏
l=0

l 6=k

x− xl
xk − xl

.

(b) Even if the products
∏n

l=0

l 6=k
1

xk−xl
are precalculated, to evaluate p(x) at

x requires for each data fk, k = 1, . . . , n, n − 1 subtractions and n − 2
multiplications. Thus the number of operations is O(n2).

(c) Uniqueness is proven in the following way. Suppose that two polynomials
p, q ∈ Pn[x] satisfy p(xi) = q(xi) = fi, i = 0, . . . , n. Then the n-th degree
polynomial p − q vanishes at n + 1 distinct points. However, the only n-
th degree polynomial with n + 1 or more zeros is the zero polynomial.
Therefore p = q.

(d) For x0 = 0, x1 = 1, x2 = 2 and f0 = 1, f1 = 2, f2 = 3, the polynomial is

p(x) = f0
x− x1

x0 − x1

x− x2

x0 − x2
+ f1

x− x0

x1 − x0

x− x2

x1 − x2
+ f2

x− x0

x2 − x0

x− x1

x2 − x1

= 1
x− 1

−1

x− 2

−2
+ 2

x

1

x− 2

−1
+ 3

x

2

x− 1

1

=
1

2
(x− 1)(x− 2)− 2x(x− 2) +

3

2
x(x− 1)

= x+ 1.

The degree of p(x) is one.

(e) Given pairwise distinct points x0, x1, . . . , xn ∈ [a, b], let p ∈ Pn[x] inter-
polate f ∈ Cn[a, b] at these points. The coefficient of xn in p is called
the divided difference of degree n and denoted by f [x0, x1, . . . , xn]. The
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divided difference table is

f [x0]

f [x1]

f [x2]

...

f [xn]

↘
↗
↘
↗
↘

↗

f [x0, x1]

f [x1, x2]

...

f [xn−1, xn]

↘
↗
↘

↗

f [x0, x1, x2]

...

f [xn−2, xn−1, xn]

. . .

. .
.

. . .

. .
.
f [x0, . . . , xn].

The divided difference table is used for the Newton form of interpolant.
This has the form

p(x) := f [x0] + f [x0, x1](x− x0) + · · ·+ f [x0, . . . , xn−1]

n−2∏
i=0

(x− xi)

+f [x0, . . . , xn]

n−1∏
i=0

(x− xi).

Provided that the divided differences are known, it can be evaluated at
a given point x in just O(n) operations as long as we employ the nested
multiplication as in the Horner scheme

pn(x) = {· · · {{f [x0, . . . , xn](x− xn−1) + f [x0, . . . , xn−1]} × (x− xn−2)+

f [x0, . . . , xn−2]} × (x− xn−3) + · · · }+ f [x0].

(f) The divided difference table relies on the recurrence relation of divided
differences

f [x0, x1, . . . , xk, xk+1] =
f [x1, . . . , xk+1]− f [x0, . . . , xk]

xk+1 − x0
.

This is proven by considering the the polynomials p(x) and q(x) that
interpolate f at x0, . . . , xk and x1, . . . , xk+1 respectively. Let

r(x) :=
(x− x0)q(x) + (xk+1 − x)p(x)

xk+1 − x0
∈ Pk+1[x].

It can be easily seen that r(xi) = f(xi) for i = 0, . . . , k + 1. Hence r is
the unique interpolating polynomial of degree k+ 1 and the coefficient of
xk+1 in r is given by the formula above.
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(g)
1

2

3

↘
↗
↘
↗

1

1

↘
↗ 0

With the additional data the difference table becomes

1

2

3

5

↘
↗
↘
↗
↘
↗

1

1

2

↘
↗
↘
↗

0

1
2

↘
↗

1
6



C H A P T E R 4

Non-linear Systems
Exercises

4.1 EXERCISE 4.1

Write a program which takes a polynomial of degree between 2 and 7 as input,
applies Newton’s root finding method and colours the basins of attraction for
each root a different colour. Try it out for the polynomial zn − 1 for n =
2, . . . , 7.

Solution

function img = NewtonFractal(P)
% Calculates the basins of attractions when the Newton method for root
% finding is used on a polynomial of degree at most 7.
% P input argument, vector specifying the coefficents of the
% polynomial starting with the coefficient of the highest power
% img output argument, each pixel is coloured according to the root it
% converges to and shaded by the number of iterations necessary, the
% more iterations, the darker shade
NITER = 100; % maximum number of iterations
threshold = .001; % convergence criterion
pixelnum = 1000; % resolution of image
colorArr = [7,3]; % seven colours specified by their RGB values
%RED
colorArr(1,1) = 1;colorArr(1,2) = 0;colorArr(1,3) = 0;
%GREEN
colorArr(2,1) = 0;colorArr(2,2) = 1;colorArr(2,3) = 0;
%BLUE
colorArr(3,1) = 0;colorArr(3,2) = 0;colorArr(3,3) = 1;
%YELLOW
colorArr(4,1) = 1;colorArr(4,2) = 1;colorArr(4,3) = 0;
%WHITE
colorArr(5,1) = 1;colorArr(5,2) = 0;colorArr(5,3) = 1;
%CYAN
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colorArr(6,1) = 0;colorArr(5,2) = 1;colorArr(5,3) = 1;
%RED
colorArr(7,1) = 1;colorArr(6,2) = 1;colorArr(6,3) = 1;

% generate grid over the square [−1, 1] x [−1, 1]
[xs,ys] = meshgrid(linspace(−1,1,pixelnum), linspace(−1,1,pixelnum));
% grid points interpreted as complex numbers, which is an array of
% length pixelnum * pixelnum
solutions = xs(:) + 1i*ys(:);
% array of indices of grid points under consideration
select = 1:numel(xs);
% for each grid point initialise the necessary number of iterations
% to the maximum
niters = NITER*ones(numel(xs), 1);

% calculate the roots of the polynomial
Proots = roots(P);
if isempty(Proots)

disp('Polynomial has no roots');
return;

end
% calculate the coefficients of the derivative
Pderivative = zeros(length(P) − 1,1);
for it = 1:length(P)−1

Pderivative(it)=(length(P)−it)*P(it);
end

for iteration = 1:NITER
% each iteration considers the entire grid minus the grid points
% where convergence has occured
oldi = solutions(select);

% in newton's method we have z_{i+1} = z_i − p(z_i) / p'(z_i)
solutions(select) = oldi − polyval(P,oldi) ...

./ polyval(Pderivative,oldi);

% check for convergence or NaN (in case of a division by zero)
differ = (oldi − solutions(select));
% logical array marking converged grid points
converged = abs(differ) < threshold;
% logical array marking problematic grid points
problematic = isnan(differ);

% if converence occured update the necessary number of iterations
niters(select(converged)) = iteration;
% for problematic grid points set the number of iterations to the
% maximum + 1
niters(select(problematic)) = NITER+1;
%remove indices of converged or problematic points
select(converged | problematic) = [];

end

Max = max(niters);
niters = reshape(niters,size(xs));
solutions = reshape(solutions,size(xs));

A = zeros(pixelnum, pixelnum);
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B = uint8(round(A * 255));
RowCol = size(solutions);
rows = RowCol(1);
cols = RowCol(2);
for i1 = 1:rows

for i2 =1:cols
% to which root did the method converge
tmp = abs(repmat(solutions(i1,i2), size(Proots))−Proots);
rootIndex = find(tmp<threshold);
if ¬isempty(rootIndex)
% color associated with roots and rate of convergence
B(i1,i2,1)=colorArr(rootIndex,1) * ...

(1−(niters(i1,i2)/(Max))) * 255;
B(i1,i2,2)=colorArr(rootIndex,2) * ...

(1−(niters(i1,i2)/(Max))) * 255;
B(i1,i2,3)=colorArr(rootIndex,3) * ...

(1−(niters(i1,i2)/(Max))) * 255;
end

end
end

Figure 4.1 shows the basins of attraction for Newton’s method applied to
zn − 1 for n = 2, . . . , 7.
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Figure 4.1 Basins of attraction for Newton’s method applied to zn − 1

(colour images can be produced by the code provided)
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4.2 EXERCISE 4.3

Implement Brent’s algorithm. It should terminate if either f(bn) or f(s) is
zero or if |bn − an| is small enough. Use the bisection rule if s is not between
(3an + bn)/4 and bn for both linear and inverse quadratic interpolation or if
any of Brent’s conditions arises. Try your program on f(x) = x3−x2−4x+4
which has zeros at −2, 1 and 2. Start with the interval [−4, 2.5] which contains
all roots. List which method is used in each iteration.

Solution

function [ x,k,z ] = Brent( f,a,b,tol,max )
% implements Brent's algorithm to find a solution of f(x)=0;
% f input argument, function handle or vector of polynomial
% coefficients
% b input argument, initial iterate
% c input argument, initial contrapoint
% tol input argument, tolerance
% max input argument, maximum number of iterations
% x output argument, solution
% k output argument, number of iterations
% z output argument, holds information which method was used for each
% iteration; 1 −> Binary search
% 2 −> Inverse quadratic interpolation
% 3 −> Linear interpolation

% first check user inputs
if tol≤0;

error('tol must be >0');
elseif max≤0;

error('max must be >0');
elseif isa(f,'function_handle');

% do nothing
elseif isa(f,'double');

[n,m]=size(f); % find the size of f
if n6=1 && m6=1; % then f is not a vector

error(['f must be a function handle or vector holding ',...
'polynomial coefficients']);

else
v=poly2sym(f); % this converts the vector of coefficients to

% an expression for the polynomial
f=matlabFunction(v); % this converts the expression to a

% function handle
end

else
error(['f must be a function handle or vector holding ',...

'polynomial coefficients']);
end

∆=tol/2; % set ∆

fa=feval(f,a); % evaluate f(a)
fb=feval(f,b); % evaluate f(b)
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k=1; % initialise iteration counter

if fa==0; % check incase the solution is at one of the endpoints
x=a; return;

elseif fb==0;
x=b; return;

elseif fa*fb>0; % if f(a),f(b) have the same sign
error('f(a),f(b) must have opposite signs');

end

if abs(fb)<abs(fa); % then we need to interchange b and c, so the
% iterate is the best approximation to x

swap=a; % hold a
a=b; a=swap; % swap a and b
fa=feval(f,a); % revaluate f(b)
fb=feval(f,b); % revaluate f(c)

end

c=a; % we will need an extra variables to hold the previous
d=a; % iterates, in the first instance set these to a.
fc=fa; fd=fa; % store f(c), f(d)

z=zeros(max,1); % z will be a variable which holds information on
z(1)=1; % whether the previous iteration used binary

% search, linear interpolation or IQI.

% start of algorithm
while abs(a−b)>tol && k≤max;

if fa6=fb && fb6=fc && fc6=fa; % then choose s according to
% inverse quadratic interpolation

s=a*fb*fc/((fa−fb)*(fa−fc))+fa*b*fc/((fb−fa)*(fb−fc))...
+fa*fb*c/((fc−fa)*(fc−fb));

temp=2; % temporarily store this choice of interpolation
else % if any of fa,fb,fc coincide,

% choose s according to linear
% interpolation

s=b−fb*(b−a)/(fb−fa);
temp=3; % temporarily store this choice of interpolation

end

if or((s<(3*a+b)/4 & s<b),(s>(3*a+b)/4 & s>b)); % if s is not
% between (3*a+b)/4
% and b

s=(a+b)/2; z(k+1)=1; % choose s according to binary search
% and set z=1

elseif z(k)==1 && abs(b−c)<∆;
s=(a+b)/2; z(k+1)=1; % choose s according to binary search

% and set z=1
elseif z(k)6=1 && abs(c−d)<∆;

s=(a+b)/2; z(k+1)=1; % choose s according to binary search
% and set z=1

elseif z(k)==1 && abs(s−b)≥abs(b−a)/2;
s=(a+b)/2; z(k+1)=1; % choose s according to binary search

% and set z=1
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elseif z(k)6=1 && abs(s−b)≥abs(b−d)/2;
s=(a+b)/2; z(k+1)=1; % choose s according to binary search

% and set z=1
else

z(k+1)=temp;
end

fs=feval(f,s); % evaluate f(s)
if fs==0; % check if we have found the solution

x=s;
return;

end

d=c; % update d
c=b; % update c
fa=feval(f,a); % evaluate f(a)
fb=feval(f,b); % evaluate f(b)
fd=feval(f,d); % evaluate f(d)
fc=feval(f,c); % evaluate f(c)

if fa*fs<0; % if f(a) and f(s) have different signs
b=s; % update b
fb=feval(f,b); % update f(b)

else
a=s; % update a
fa=feval(f,a); % update f(a)

end

if abs(fa)<abs(fb); % then interchange a and b, so the iterate
% is the best approximation to x

swap=a; % hold a
a=b; b=swap; % swap b and a
swap=fa; % hold f(a)
fa=fb; fb=swap; % swap f(a) and f(b)

end

if fb==0; % check if we have found the solution
x=a;

end

k=k+1; % increment k
end

x=b; % set x to the most recent iterate
z=z(1:k); % shorten z

if k==max+1;
disp('maximum number of iterations reached');

end

end

For f(x) = x3 − x2 − 4x + 4 the above implementation converges after
14 iterations to −2, when the accuracy is set to 0.01. The first iteration uses
binary search, the next linear interpolation. Then follow five iterations using
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inverse quadratic interpolation and four binary seraches. The last iterations
are two linear interpolations followed by an inverse quadratic interpolation.

4.3 EXERCISE 4.5

Newton’s method for finding the solution of f(x) = 0 is given by

x(n+1) = x(n) − f(x(n))

f ′(x(n))
,

where x(n) is the approximation to the root x∗ in the n-th iteration. The start-
ing point x(0) is already close enough to the root.

(a) By means of a sketch graph describe how the method works in a simple
case and give an example where it might fail to converge.

(b) Using the Taylor expansion of f(x∗) = 0 about x(n), relate the error in
the next iteration to the error in the current iteration and show that the
convergence of Newton’s method is quadratic.

(c) Generalize Newton’s method to higher dimensions.

(d) Let

f(x) = f(x, y) =

(
1
2x

2 + y
1
2y

2 + x

)
.

The roots lie at (0, 0) and (−2,−2). Calculate the Jacobian of f and its
inverse.

(e) Why does Newton’s method fail near (1, 1) and (−1,−1)?

(f) Let x(0) = (1, 0). Calculate x(1),x(2) and x(3) and their Euclidean norms.

(g) The approximations converge to (0, 0). Show that the speed of convergence
agrees with the theoretical quadratic speed of convergence.

Solution

(a) Newton’s method given by

x(n+1) = x(n) − f(x(n))

f ′(x(n))
.

is geometrically the tangent to the curve f at the point (x(n), f(x(n))). It
has the equation

y = f(x(n)) + f ′(x(n))(x− x(n)).
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The point x(n+1) is the point of intersection of this tangent with the x-axis.
The method fails if any of the iteration points happens to be a stationary
point, i.e. a point where the first derivative vanishes. In this case the next
iteration step is undefined, since the tangent there will be parallel to the
x-axis and not intersect it. Even if the derivative is nonzero, but small the
next approximation may be far worse.

(b) Let x∗ be the root. The Taylor expansion of f(x∗) about x(n) is

f(x∗) = f(x(n)) + f ′(x(n))(x∗ − x(n)) +
1

2!
f ′′(ξ(n))(x∗ − x(n))2,

where ξ(n) lies between x(n) and x∗. Since x∗ is the root, this equates to
zero

f(x(n)) + f ′(x(n))(x∗ − x(n)) +
1

2!
f ′′(ξ(n))(x∗ − x(n))2 = 0.

Let’s assume that f ′ is bounded away from zero in a neighbourhood of
x∗ and x(n) lies in this neighbourhood. We can then divide the above
equation by f ′(x(n)). After rearranging this becomes

f(x(n))

f ′(x(n))
+ (x∗ − x(n)) = −1

2

f ′′(ξ(n))

f ′(x(n))
(x∗ − x(n))2.

Using the definition of Newton’s method we can relate the error in the
next iteration to the error in the current iteration

x∗ − x(n+1) = x∗ − x(n) +
f(x(n))

f ′(x(n))
= −1

2

f ′′(ξ(n))

f ′(x(n))
(x∗ − x(n))2.

This shows that under certain conditions the convergence of Newton’s
method is quadratic.

(c) Newton’s method readily generalizes to higher dimensional problems.
Given a function f : Rm → Rm, we consider f as a vector of m func-
tions

f(x) =

 f1(x)
...

fm(x)

 ,

where x ∈ Rm. Let h = (h1, . . . hm)T be a small perturbation vector.
The multidimensional Taylor expansion of each function component fi,
i = 1, . . . ,m is

fi(x + h) = fi(x) +

m∑
k=1

∂fi(x)

∂xk
hk +O(‖h‖2).
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The Jacobian matrix Jf (x) has the entries [Jf (x)]i,k = ∂fi(x)
∂xk

and thus
we can write in matrix notation

f(x + h) = f(x) + Jf (x)h +O(‖h‖2).

Assuming that x is an approximation to the root, we want to improve
the approximation by choosing h. Thus we want to choose h such that
f(x + h) = 0. Ignoring higher order terms, we solve the above equation
for h. The new approximation is set to x + h. More formally the Newton
iteration in higher dimensions is

x(n+1) = x(n) − Jf (x(n))−1f(x(n)).

(d) Given

f(x) = f(x, y) =

(
1
2x

2 + y
1
2y

2 + x

)
the Jacobian is

Jf (x) =

(
x 1
1 y

)
and its inverse is

Jf (x)−1 =
1

xy − 1

(
y −1
−1 x

)
.

(e) Since the inverse of the Jacobian involves the division by xy−1, it becomes
unbounded near (1, 1) and (−1,−1).

(f) Starting with x(0) = (1, 0), we have

x(1) =

(
1
0

)
− 1

−1

(
0 −1
−1 1

)(
1
2
1

)
=

(
1
0

)
+

(
−1
1
2

)
=

(
0
1
2

)
with norm ‖x(1)‖ = 1/2. Next

x(2) =

(
0
1
2

)
− 1

−1

(
1
2 −1
−1 0

)( 1
2
1
8

)
=

(
0
1
2

)
+

(
1
8

− 1
2

)
=

(
1
8
0

)
with norm ‖x(2)‖ = 1/8. Next

x(3) =

(
1
8
0

)
− 1

−1

(
0 −1
−1 1

8

)( 1
27

1
8

)
=

(
1
8
0

)
+

(
− 1

8
− 1

27 + 1
26

)
=

(
0
1
27

)
with norm ‖x(3)‖ = 1/27.

(g) We clearly have ‖x(1)‖ = 1
2 = 1

2‖x
(0)‖2, ‖x(2)‖ = 1

8 = 1
2‖x

(1)‖2 and

‖x(3)‖ = 1
27 = 1

2‖x
(2)‖2.
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4.4 EXERCISE 4.7

The following reaction occurs when water vapor is heated

H2O 
 H2 +
1

2
O2.

The fraction x ∈ [0, 1] of H2O that is consumed satisfies the equation

K =
x

1− x

√
2pt

2 + x
, (4.1)

where K and pt are given constants. The following figure illustrates this:

(a) Rephrase the problem of determining x as finding the root of a function
f(x) and state f(x). Sketch a graph illustrating the rephrased problem.

(b) Describe the bisection method to find the root of a function. Comment on
the robustness and speed of convergence of the method.

(c) Given an approximation x(n) to the root x∗ of the function f(x), give the
formula how Newton’s method calculates the next approximation x(n+1),
explain what this means geometrically and expand your sketch with an
example how Newton’s method works.

(d) What is the order of convergence of Newton’s method?

(e) What happens to the right hand side of equation (4.1) if x approaches
1 and what does this mean for Newton’s method, if the starting point is
chosen close to 1?

(f) The derivative of f(x) at 0 is 1. What is the next approximation if 0 is
chosen as the starting point? Depending on K what problem might this
cause?

(g) Give another example to demonstrate when Newton’s method might fail to
converge?



64 � Solutions to Odd-Numbered Exercises for A Concise Introduction to Numerical Analysis

Solution

(a) Finding the fraction x satisfying the equation

K =
x

1− x

√
2pt

2 + x
,

is the same as finding the root of the function

f(x) =
x

1− x

√
2pt

2 + x
−K.

The following figure shows the adjusted graph:

(b) If for a given interval [a, b] f(a) and f(b) have opposite signs, then f must
have at least one zero in the interval by the intermediate value theorem,
if f is continuous. The bisection method can be used to find the zero. It
is also known as binary search method.

We repeatedly bisect the interval and select the interval in which the
root must lie. At each step we calculate the midpoint m = (a + b)/2
and the function value f(m). Unless m is itself a root (improbable, but
not impossible), there are two cases: If f(a) and f(m) have opposite signs,
then the method sets m as the new value for b. Otherwise if f(m) and f(b)
have opposite signs, then the method sets m as the new a. The algorithm
terminates, when b− a is sufficiently small.

It is robust, i.e. it is guaranteed to converge although at a possibly slow
rate. Suppose the calculation is performed in binary. In every step the
width of the interval containing a zero is reduced by 50%. Therefore at
worst the method will add one binary digit of accuracy in each step. So
the iterations are linearly convergent.
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(c) Newton’s method given by

x(n+1) = x(n) − f(x(n))

f ′(x(n))
.

is geometrically the tangent to the curve f at the point (x(n), f(x(n))). It
has the equation

y = f(x(n)) + f ′(x(n))(x− x(n)).

The point x(n+1) is the point of intersection of this tangent with the x-
axis. This is illustrated by the following figure:

(d) Under certain conditions the convergence of Newton’s method is
quadratic. The conditions are that there exists a neighbourhood U of
the root where f ′ is bounded away from zero and where f ′′ is finite and
that the starting point lies sufficiently close to x∗.

(e) If x approaches 1, then

x

1− x

√
2pt

2 + x

approaches infinity, since the denominator 1 − x is close to zero. If the
starting point in Newton’s method is chosen close to 1, then the tangent
is close to a vertical line which means the next approximation is close to
the previous approximation. This means that convergence is slow. With
every next approximation the angle between the tangent and the vertical
increases and convergence will speed up.

(f) If 0 is the starting point x(0), then the next approximation is

x(1) = x(0) − f(x(0))

f ′(x(0))
= 0− −K

1
= K.

If K > 1, then the next approximation x(1) lies outside the interval [0, 1]
(where we know the root lies).
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(g) Either of the following is accepted as answer:

� Newton’s method fails if any of the iteration points happens to be
a stationary point, i.e. a point where the first derivative vanishes.
In this case the next iteration step is undefined, since the tangent
there will be parallel to the x-axis and not intersect it. Even if the
derivative is nonzero, but small the next approximation may be far
worse.

� For some functions it can happen that the iteration points enter an
infinite cycle. Take for example the polynomial f(x) = x3−2x+2. If
0 is chosen as the starting point, the first iteration produces 1, while
the next iteration produces 0 again and so forth.



C H A P T E R 5

Numerical Integration
Exercises

5.1 EXERCISE 5.1

The mid-point rule (b−a)f( 1
2 (a+b)) is exact for polynomials of degree 1. Use

Peano’s kernel theorem to find a formula for L(f). (Hint: This is similar to
the trapezium rule, except that it is harder to prove that K(θ) does not change
sign in [a, b].)

Solution

The kernel is given by

K(θ) = L[(x− θ)+] =

∫ b

a

(x− θ)+dx− (b− a)(
a+ b

2
− θ)+.

For θ ∈ [a+b
2 , b] the second term of the difference is zero and thus K(θ) =

1
2 (b− θ)2 ≥ 0.

For θ ∈ [a, a+b
2 ] we have

K(θ) = 1
2 (b− θ)2 − 1

2 (b− a)(a+ b− 2θ)

= 1
2 (b2 − 2bθ + θ2 − ab− b2 + 2bθ + a2 + ab− 2aθ)

= 1
2 (θ − a)2 ≥ 0.

Thus the kernel does not change sign. Next we need to calculate the integral
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of the kernel∫ b

a

K(θ)dθ =

∫ (a+b)/2

a

1

2
(θ − a)2dθ +

∫ b

(a+b)/2

1

2
(b− θ)2dθ

=

[
1

6
(θ − a)3

](a+b)/2

a

+

[
−1

6
(b− θ)3

]b
(a+b)/2

=
1

24
(b− a)3.

The error bound which was deduced from first principles in the lecture follows.

5.2 EXERCISE 5.3

Implement the Gauss-Legendre quadrature for n = 2, . . . , 5 and approximate∫ 1

−1
xjdx for j = 1, . . . , 10 and compare the results to the true solution. Inter-

pret your results.

Solution

function [ Q ] = GaussLegendre( f,a,b,n )
% employs Gauss−Legendre rule to integrate f over [a,b]
% f input argument, function handle
% a,b input arguments, integration bounds, a<b
% n input argument, number of abscissae
% Q output argument, value of integral

% first check user inputs
if isa(f,'function_handle')==0;

error('f must be a function handle');
elseif a≥b;

error('a must be <b');
elseif mod(n,1)6=0 | | n≤0; % if n does not equal zero modulo 1

% then it is not an integer value
error('n must be a positive integer');

end

syms x; % create a symbolic variable
legendre=legendreP(n,x); % look up Legendre polynomial
legendre=sym2poly(legendre); % convert symbolic expression to

% vector of polynomial coefficents
knots=roots(legendre); % calculate roots of the Legendre polynomial

% generate the weights by integrating the Lagrange
% interpolating polynomials
for k=1:n;

syms L; % initialise symbolic variable for kth Lagrange polynomial
L=1; % set to unity
for j=1:n;

if j==k;
% do nothing

else
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L=L*(x−knots(j))/(knots(k)−knots(j)); % add another term
% to the product

end
end
L=sym2poly(L); % convert symbolic expression to a vector of

% polynomial coefficients
I=zeros(n+1,1); % initialise vector to hold the integral
for j=1:n; % construct the polynomial coeffients of the

% integral of L
I(j)=L(j)/(n+1−j);

end
weights(k)=polyval(I,1)−polyval(I,−1); % evaluate I at the

% endpoints to determine
% the weight

end
Q=0; % initialise Q
% evaluate the quadrature
for i=1:n;

Q=Q+weights(i)*feval(f,(b−a)*knots(i)/2+(a+b)/2);
end
Q=(b−a)/2*Q;
end
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The following table shows the error each Gauss-Legendre quadrature makes
when approximating the given integral.

n = 2 n = 3 n = 4 n = 5∫ 1

−1

xdx = 0 2.2 ∗ 10−16 5.6 ∗ 10−17 1.1 ∗ 10−16 5.6 ∗ 10−17

∫ 1

−1

x2dx =
2

3
−1.1 ∗ 10−16 0 1.1 ∗ 10−16 1.1 ∗ 10−16

∫ 1

−1

x3dx = 0 2.2 ∗ 10−16 1.1 ∗ 10−16 1.7 ∗ 10−17 5.6 ∗ 10−17

∫ 1

−1

x4dx =
2

5
−0.18 −5.6 ∗ 10−17 5.6 ∗ 10−16 0∫ 1

−1

x5dx = 0 1.2 ∗ 10−16 1.1 ∗ 10−16 −1.2 ∗ 10−17 −9.4 ∗ 10−17

∫ 1

−1

x6dx =
2

7
−0.21 −0.046 8.3 ∗ 10−16 0∫ 1

−1

x7dx = 0 5.9 ∗ 10−17 9.7 ∗ 10−17 −2.2 ∗ 10−16 −2.7 ∗ 10−16

∫ 1

−1

x8dx =
2

9
−0.20 −0.078 −0.011 0∫ 1

−1

x9dx = 0 2.4 ∗ 10−17 6.9 ∗ 10−17 −2.5 ∗ 10−16 −3.7 ∗ 10−16

∫ 1

−1

x10dx =
2

11
−0.17 −0.095 −0.026 −0.0029

The error is very small as long as the integrated power is less than 2n−1, but
increases significantly if it is larger than the degree of polynomial for which
the quadrature is correct. This is not true for integrals of odd powers. These
are odd functions for which f(−x) = −f(x). The integral over the interval
[−1, 1] of any odd function evaluates to zero. Similarly, since the Legendre-
Gauss abscissae are distributed symmetrically around zero, the quadrature
rule evaluates to zero. The small errors are due to rounding errors.

5.3 EXERCISE 5.5

Consider the numerical evaluation of an integral of the form

I =

∫ b

a

f(x)w(x)dx.

(a) Define Gaussian quadrature and state how the abscissae are obtained. Give



Numerical Integration Exercises � 71

a formula for the weights. If f is a polynomial, what is the maximum degree
of f for which the Gaussian quadrature rule is correct.

(b) In the following let the interval be [a, b] = [−2, 2] and w(x) = 4−x2. Thus
we want to approximate the integral∫ 2

−2

(4− x2)f(x)dx.

Let the number of abscissae be 2. Calculate the abscissae.

(c) Calculate the weights.

(d) To approximate the integral∫ 1

−1

(1− x2)f(x)dx.

by a Gaussian quadrature the orthogonal polynomials are the Jacobi poly-
nomials for α = 1 and β = 1. For n = 2 the abscissae are x1 = −1/

√
5

and x2 = 1/
√

5. The weights are w1 = w2 = 2/3. The interval of integra-
tion is changed from [−1, 1] to [−2, 2]. What are the new abscissae and
weights? Explain why the weights are different to the weights derived in
the previous part.

Solution

(a) Gaussian quadrature approximates the integral in the following way∫ b

a

f(x)w(x)d(x) ≈
n∑
i=1

wif(xi).

The abscissae x1, . . . , xn are the roots of the n-th orthogonal polynomial
pn, i.e. ∫ b

a

pn(x)p(x)w(x)dx = 0

for all polynomials of degree less than or equal to n − 1. Let Li be the
i-th Lagrange interpolating polynomial for these abscissae, i.e. Li is the
unique polynomial of degree n−1 such that Li(xi) = 1 and Li(xk) = 0 for
k 6= i. The weights for the quadrature rule are then calculated according
to

wi =

∫ b

a

Li(x)w(x)dx.

If f is a polynomial, the maximum degree of f for the quadrature rule to
be correct is 2n− 1.
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(b) In the case [a, b] = [−2, 2], w(x) = 4 − x2 and n = 2 we seek weights w1

and w2 and abscissae x1 and x2 such that∫ 2

−2

(4− x2)f(x)dx ≈ w1f(x1) + w2f(x2).

We know that the abscissae x1 and x2 are the zeros of a quadratic polyno-
mial p which is orthogonal to 1 and x with respect to the weight function
w(x). Let p = x2 + ax+ b,

0 =

∫ 2

−2

(4− x2)p(x)dx

=

∫ 2

−2

(−x4 − ax3 + (4− b)x2 + 4ax+ 4b)dx

=

[
−1

5
x5 − a

4
x4 +

4− b
3

x3 + 2ax2 + 4bx

]2

−2

= −1

5
25 +

4− b
3

23 + 4b2 +
1

5
(−2)5 − 4− b

3
(−2)3 + 4b(−2)

= −1

5
26 +

4− b
3

24 + 4b22

= 24(−4

5
+

4− b
3

+ b).

From this we deduce b = − 4
5 . To deduce a we consider

0 =

∫ 2

−2

(4− x2)xp(x)dx

=

∫ 2

−2

(−x5 − ax4 + (4− b)x3 + 4ax2 + 4bx)dx

=

[
−1

6
x6 − a

5
x5 +

4− b
4

x4 +
4a

3
x3 + 2bx2

]2

−2

= −a
5

25 +
4a

3
23 +

a

5
(−2)5 − 4a

3
(−2)3 =

17

15
26a.

Therefore a = 0 and p(x) = x2 − 4
5 and the abscissae are x1 = −2/

√
5

and x2 = 2/
√

5.

(c) To determine the weights we use the fact that the quadrature has to be
correct when integrating 1 and x. Thus

w1 + w2 =

∫ 2

−2

(4− x2)dx =
32

3

2√
5

(−w1 + w2) =

∫ 2

−2

(4− x2)xdx = 0.

and w1 = w2 = 16/3.
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(d) If one has a quadrature rule for the interval [c, d], it can be adapted to
the interval [a, b] with a simple change of variables. Let t(x) be the linear
transformation taking [c, d] to [a, b],

t(x) = a+
b− a
d− c

(x− c).

If xi and wi, i = 0, . . . , n, are the abscissae and weights of a quadrature
approximating integrals over [c, d], then the abscissae and weights of the
quadrature over [a, b] are

x̂i = t(xi) and ŵi =
b− a
d− c

wi.

In our case [c, d] = [−1, 1] and [a, b] = [−2, 2] and t(x) = 2x. The new
abscissae and weights are

x̂1 = −2/
√

5, x̂2 = 2/
√

5 and ŵ1 = ŵ2 = 4/3.

The weights differ since the weight functions do not correspond.

5.4 EXERCISE 5.7

(a) Describe what is meant by a composite rule of integration.

(b) Give two examples of composite rules and their formulae.

(c) Let a quadrature rule be given on [c, d] by

Qn(f) =

n∑
j=1

wjf(xj) ≈
∫ d

c

f(x)dx.

We denote by (M ×Qn) the composite rule Qn applied to M subintervals
of [a, b]. Give the formula for (M ×Qn).

(d) Describe the difference between open and closed quadrature rules and how
this affects the composite rule.

(e) Show that if Qn is a quadrature rule that integrates constants exactly, i.e.

Qn(1) =
∫ d
c

1dx = d − c and if f is bounded on [a, b] and is Riemann
integrable, then

lim
M→∞

(M ×Qn)(f) =

∫ b

a

f(x)dx.

(f) Let [c, d] = [−1, 1]. Give the constant, linear and quadratic monic polyno-
mials which are orthogonal with respect to the inner product given by

〈f, g〉 =

∫ 1

−1

f(x)g(x)dx

and check that they are orthogonal to each other.
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(g) Give the abscissae of the two-point Gauss-Legendre rule on the interval
[−1, 1].

(h) The weights of the two-point Gauss-Legendre rule are 1 for both abscis-
sae. State the two point Gauss-Legendre rule and give the formula for the
composite rule on [a, b] employing the two-point Gauss-Legendre rule.

Solution

(a) A composite rule is constructed by splitting the integral into a set of panels
and applying (usually) the same quadrature rule in each subinterval and
summing the results.

(b) Possible examples for composite rules are:

� composite midpoint rule:∫ b

a

f(x)dx ≈ h
N∑
i=1

f(a+ (i− 1

2
)h),

� composite trapezium rule:∫ b

a

f(x)dx ≈ h

2
f(a) + h

N−1∑
i=1

f(a+ ih) +
h

2
f(b),

� composite Simpson rule:∫ b

a

f(x)dx ≈ h

6

[
f(a) + 2

N−1∑
i=1

f(a+ ih) + 4

N∑
i=1

f(a+ (i− 1

2
)h) + f(b)

]
,

� composite rectangle rule:∫ b

a

f(x)dx ≈ h
N∑
i=1

f(a+ ih).

(c) For the quadrature rule given on [c, d] by

Qn(f) =

n∑
j=1

wjf(xj).

the composite rule on [a, b] is given by

(M ×Qn)(f) =
b− a

M(d− c)

M∑
i=1

n∑
j=1

wjf(xij),

where xij is the j-th abscissa in the i-th subinterval calculated as xij =
ti(xj), where ti is the transformation taking [c, d] of length d− c to [a +
(i− 1)(b− a)/M, a+ i(b− a)/M ] of length (b− a)/M .



Numerical Integration Exercises � 75

(d) If Qn is an open rule, it does not include the endpoints. If Qn is a closed
rule, it includes both end-points. If Qn is an open rule, then (M × Qn)
uses Mn points. However, if Qn is a closed rule, then M ×Qn uses only
(n− 1)M + 1 points, which is M − 1 less function evaluations.

(e) If Qn is a quadrature rule that integrates constants exactly, i.e. Qn(1) =∫ d
c

1dx = d− c, then

Qn(1) =

n∑
j=1

wj = d− c.

That is the weights sum to d − c. Swapping the summations and taking
the limit in

(M ×Qn)(f) =
b− a

M(d− c)

M∑
i=1

n∑
j=1

wjf(xij),

gives

lim
M→∞

(M ×Qn)(f) =
1

d− c

n∑
j=1

wj lim
M→∞

[
b− a
M

M∑
i=1

f(xij)

]
.

The term in the square brackets is a Riemann sum and thus converges

to the integral
∫ b
a
f(x)dx, since xij lies in the i-th subinterval of length

(b− a)/M for each j. Since the weights sum to d− c, it follows that

lim
M→∞

(M ×Qn)(f) =

∫ b

a

f(x)dx.

(f) The constant monic orthogonal polynomial is p0(x) = 1. The linear monic
orthogonal polynomial is p1(x) = x and we have

〈p0, p1〉 =

∫ 1

−1

xdx =

[
x2

2

]1

−1

= 0.

Let p2 = x2 + a. To determine a we calculate

0 = 〈p0, p2〉 =

∫ 1

−1

(x2 +a)dx =

[
x3

3
+ ax

]1

−1

=
1

3
+a−(

−1

3
−a) =

2

3
+2a.

Hence a = −1/3 and p2(x) = x2 − 1/3. By construction p2 is orthogonal
to p0. Check

〈p1, p2〉 =

∫ 1

−1

(x3 − x

3
)dx =

[
x4

4
− x2

6

]1

−1

=
1

4
− 1

6
− 1

4
+

1

6
= 0.
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(g) The abscissae of the two-point Gauss-Legendre rule on [−1, 1] are the
roots of p2 which are ±1/

√
3.

(h) The two point Gauss-Legendre rule is∫ 1

−1

f(x)d(x) ≈ f(− 1√
3

) + f(
1√
3

).

The transformation ti taking [−1, 1] of length 2 to the i-th subinterval
[a+ (i− 1)(b− a)/M, a+ i(b− a)/M ] of length (b− a)/M is

ti(x) = a+
b− a
2M

(x+ 2i− 1).

The composite rule on [a, b] is given by

b− a
2M

M∑
i=1

[f(a+
b− a
2M

(− 1√
3

+ 2i− 1)) + f(a+
b− a
2M

(
1√
3

+ 2i− 1)).

5.5 EXERCISE 5.9

The integral ∫ 2

0

f(x)dx

shall be approximated by a two point Gaussian quadrature formula.

(a) Find the monic quadratic polynomial g(x) which is orthogonal to all linear
polynomials with respect to the scalar product

〈f, g〉 =

∫ 2

0

f(x)g(x)dx,

where f(x) denotes an arbitrary linear polynomial.

(b) Calculate the zeros of the polynomial found in (a) and explain how they
are used to construct a Gaussian quadrature rule.

(c) Describe how the weights are calculated for a Gaussian quadrature rule

and calculate the weights to approximate
∫ 2

0
f(x)dx.

(d) For which polynomials is the constructed quadrature rule correct?

(e) State the functional L(f) acting on f describing the error when the integral∫ 2

0
f(x)dx is approximated by the quadrature rule.

(f) Define the Peano kernel and state the Peano kernel theorem.

(g) Calculate the Peano kernel for the functional L(f) in (e).

(h) The Peano kernel does not change sign in [0, 2] (not required to be proven).
Derive an expression for L(f) of the form constant times a derivative of
f . (Hint: (a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4)
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Solution

(a) The integral ∫ 2

0

f(x)dx

shall be approximated by a Gaussian quadrature formula. Let x2 +ax+ b
be a general monic quadratic polynomial. It is orthogonal to all linear
polynomials if it is orthogonal to 1 and x:

0 =

∫ 2

0

(x2 + ax+ b)dx = [
x3

3
+
ax2

2
+ bx]20 =

8

3
+ 2a+ 2b,

0 =

∫ 2

0

(x2 + ax+ b)xdx = [
x4

4
+
ax3

3
+
bx2

2
]20 = 4 +

8

3
a+ 2b.

Subtracting the first equation from the second gives

12

3
− 8

3
+ (

8

3
− 2)a = 0

and thus a = −2. Inserting this into any of the two equations gives b = 2/3.

(b) The zeros of x2 − 2x+ 2/3 are

x1,2 =
−(−2)±

√
(−2)2 − 4 2

3

2
= 1± 1√

3
.

They are used as the abscissae in the two point Gaussian quadrature rule.

(c) The weights for a Gaussian quadrature are calculated by finding the La-
grange polynomials which are one at one of the abscissae and zero at all the
others and integrating them over the range. In this case we have to find two
linear polynomials, one interpolating the data (1−1/

√
3, 1), (1 + 1/

√
3, 0)

and one interpolating (1 − 1/
√

3, 0), (1 + 1/
√

3, 1). The first one is given
by

x− (1 + 1/
√

3)

(1− 1/
√

3)− (1 + 1/
√

3)
= (−

√
3x+

√
3 + 1)/2

while the other one is

x− (1− 1/
√

3)

(1 + 1/
√

3)− (1− 1/
√

3)
= (
√

3x−
√

3 + 1)/2.

Integrating gives

1

2

∫ 2

0

(−
√

3x+
√

3 + 1)dx =
1

2
[−
√

3
x2

2
+ (
√

3 + 1)x]20 = 1,

1

2

∫ 2

0

(
√

3x−
√

3 + 1)dx =
1

2
[
√

3
x2

2
− (
√

3− 1)x]20 = 1,
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(d) The quadrature rule∫ 2

0

f(x)dx ≈ f(1− 1√
3

) + f(1 +
1√
3

)

is correct for all cubic polynomials.

(e) The functional describing the error when approximating the integral∫ 2

0
f(x)dx by the quadrature rule is

L(f) =

∫ 2

0

f(x)dx− [f(1− 1√
3

) + f(1 +
1√
3

)].

(f) The Peano kernel K of L is the function defined by

K(θ) := L[(x− θ)k+] for x ∈ [a, b].

where k is the largest integer such that L(p) = 0 for all p ∈ Pk[x].

Peano Kernel Theorem: Let L be a linear functional such that L(p) = 0
for all p ∈ Pk[x]. Provided that the exchange of L with the integration is
valid, then for f ∈ Ck+1[a, b]

L(f) =
1

k!

∫ b

a

K(θ)f (k+1)(θ)dθ.

(g) L(f) = 0 for all polynomials of degree 3 or less. Thus k = 3 and the Peano
kernel is

K(θ) =

∫ 2

0

(x− θ)3
+dx− [(1− 1√

3
− θ)3

+ + (1 +
1√
3
− θ)3

+].

Now ∫ 2

0

(x− θ)3
+dx = [(x− θ)4

+/4]20 = (2− θ)4
+/4− (0− θ)4

+/4.

The second term is zero since θ ∈ [0, 2].

For 0 ≤ θ ≤ 1− 1/
√

3

K(θ) = (2− θ)4/4− [(1− 1√
3
− θ)3 + (1 +

1√
3
− θ)3].

For 1− 1/
√

3 ≤ θ < 1 + 1/
√

3

K(θ) = (2− θ)4/4− (1 +
1√
3
− θ)3.

For 1 + 1/
√

3 ≤ θ < 2
K(θ) = (2− θ)4/4.

The figure shows the pieces of the Peano kernel. It is not required to prove
that it does not change sign.
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(h) Since K(θ) does not change sign we have

L(f) ==
1

3!

∫ 2

0

K(θ)dθf (k+1)(ξ).

Next step is to integrate the kernel

∫ 2

0
K(θ)dθ =

∫ 2

0

(2− θ)4/4dθ −
∫ 1+

√
3

0

(1 +
1√
3
− θ)3dθ

−
∫ 1−

√
3

0

(1− 1√
3
− θ)3dθ

= [−(2− θ)5/20]20 − [−(1 +
1√
3
− θ)4/4]1+

√
3

0

−[−(1− 1√
3
− θ)4/4]1−

√
3

0

= 25/20− (1 +
1√
3

)4/4− (1− 1√
3

)4/4

= 25/20− (1 +
4√
3

+
6

3
+

4

3
√

3
+

1

9
)/4

−(1− 4√
3

+
6

3
− 4

3
√

3
+

1

9
)/4 = 2/45

Therefore

L(f) =
2

3! ∗ 45
=

1

135
.
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ODEs Exercises

6.1 EXERCISE 6.1

Let h = 1
M , where M is a positive integer. The following ODEs are given

y′ = − y

1 + t
and y′ =

2y

1 + t
, 0 ≤ t ≤ 1,

with starting conditions y0 = y(0) = 1 in both cases. Forward Euler is used to
calculate the estimates yn, n = 1, . . .M . By using induction and by canceling
as many terms as possible in the resultant products, deduce simple explicit
expressions for yn, n = 1, . . .M , which should be free from summations and
products. By considering the limit for h→ 0, deduce the exact solutions of the
equations. Verify that the errors |yn − y(tn)| is at most O(h).

Solution

For the first equation forward Euler gives

yn+1 = yn − h
yn

1 + tn
= yn

(
1− h

1 + nh

)
=
yn(1 + nh− h)

1 + nh

= y0

n∏
j=0

(1 + jh− h)

(1 + jh)
=

1− h
1 + nh

,

where we use y0 = 1. We let h tend to zero and pick n for each h so that
nh→ t. Then

1− h
1 + nh

→ 1

1 + t

which can easily be verified to be the analytic solution. The error is

|yn − y(tn)| =
∣∣∣∣ 1− h
1 + nh− h

− 1

1 + nh

∣∣∣∣ =
nh2

(1 + nh)(1 + nh− h)

which is O(h) when tn = nh is confined to a finite interval.
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For the second equation we have

yn+1 = yn + h
2yn

1 + tn
= yn

1 + nh+ 2h

1 + nh

= y0

n∏
j=0

(1 + jh+ 2h)

(1 + jh)
=

(1 + nh+ 2h)(1 + nh+ h)

1 + h
.

Taking the limit as before, we obtain

(1 + nh+ 2h)(1 + nh+ h)

1 + h
→ (1 + t)2

which again can be easily verified to be the analytic solution. We have

|yn − y(tn)| =
∣∣∣∣ (1 + nh+ h)(1 + nh)

1 + h
− (1 + nh)2

∣∣∣∣ =
nh2(1 + nh)

1 + h
= O(h).

6.2 EXERCISE 6.3

Implement the backward Euler method in MATLAB or a different program-
ming language of your choice.

Solution

The backward Euler method can be implemented as follows

function [x,y]=euler_backward(f,tinit,yinit,tfinal,n)
% Euler backward method
% Calculation of h from tinit, tfinal, and n
h=(tfinal−tinit)/n;
% Initialization of t and y as column vectors
t=[tinit zeros(1,n)];
y=[yinit zeros(1,n)];
% Calculation of t and y
for i=1:n
t(i+1)=t(i)+h;
ynew=y(i)+h*(f(t(i),y(i)));
y(i+1)=y(i)+h*f(t(i+1),ynew);
end
end

The right hand side f needs to be defined via a function handle. For example
if y′ = t

y , which has the analytic solution y(t) =
√
x2 + 1 for y(0) = 1, the

function handle can be defined anonymously by

f=@(t,y) t./y;

Note that this is a very simple implementation to solve the implicit system.
Only one step of a direct iteration is executed. A better solution would be the
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use of Newton-Raphson. In this case another function handle for the derivative
of f with respect to y needs to be defined.

df=@(t,y) −t./(y*y);

A few iterations of Newton-Raphson are

for k=1:5
ynew = ynew −(h * df(t(i),ynew) − 1)\(h * f(t(i),ynew) − ynew + y(i));
end;
y(i+1) = ynew;

In a more sophisticated implementation the iterations are stopped depending
on how the error compares with an estimate of the local truncation error.

6.3 EXERCISE 6.5

Show that the method given by

yn+2 − 3yn+1 + 2yn =
1

12
h [13f(tn+2,yn+2)− 20f(tn+1,yn+1)− 5f(tn,yn)]

is at least of order 2 just like the 2-step Adams-Bashforth method.

Solution

The associated polynomials with this method are

ρ(w) = w2 − 3w + 2 and σ(w) =
13

12
w2 − 5

3
w − 5

12
.

To have order to we require ρ(ez)− zσ(ez) = O(z3). Thus

e2z − 3ez + 2− z( 13
12e

2z − 5
3e
z − 5

12 ) = 1 + 2z + 2z2 − 3− 3z − 3
2z

2 + 2

−z
(

13
12 + 13

6 z −
5
3 −

5
3z −

5
12

)
+O(z3)

= O(z3),

since all other terms vanish.

6.4 EXERCISE 6.7

The stiff differential equation

y′(t) = −106(y − t−1)− t−2, t ≥ 1, y(1) = 1,

has the analytical solution y(t) = t−1, t ≥ 1. Let it be solved numerically
by forward Euler yn+1 = yn + hnf(tn, yn) and by backward Euler yn+1 =
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yn + hnf(tn+1, yn+1), where hn = tn+1 − tn is allowed to depend on n and to
be different for the two methods. Suppose that at a point tn ≥ 1 an accuracy of
|yn−y(tn)| ≤ 10−6 is achieved and that we want to achieve the same accuracy
in the next step, i.e. |yn+1−y(tn+1)| ≤ 10−6. Show that forward Euler can fail
if hn = 2×10−6, but that backward Euler always achieves the desired accuracy
if hn ≤ tnt2n+1. (Hint: Find relations between yn+1− y(tn+1) and yn− y(tn).)

Solution

For the forward Euler method we have

yn+1 − y(tn+1) = yn − 106hn(yn −
1

tn
)− hn

t2n
− 1

tn+1

= (1− 106hn)(yn −
1

tn
) +

1

tn
− hn
t2n
− 1

tn+1

= (1− 106hn)(yn − y(tn))− h2
n

t2ntn+1
.

For hn = 2 × 10−6 the last equality becomes −(yn − y(tn)) − h2
n

t2ntn+1
. If

10−6 ≥ yn − y(tn) > 10−6 − h2
n

t2ntn+1
, we then have |yn+1 − y(tn+1)| > 10−6.

On the other hand, for the backward Euler we obtain

yn+1 = yn−106hn(yn+1−
1

tn+1
)− hn

t2n+1

= yn−106hn(yn+1−y(tn+1))− hn
t2n+1

.

Solving for yn+1 − y(tn+1) gives

(1 + 106hn)(yn+1 − y(tn+1)) = yn − y(tn+1)− hn
t2n+1

= yn − y(tn) +
1

tn
− 1

tn+1
− hn
t2n+1

= yn − y(tn) +
h2
n

tnt2n+1

.

Thus we have

|yn+1 − y(tn+1)| ≤ 1

1 + 106hn

(
|yn − y(tn)|+ h2

n

tnt2n+1

)
.

Using |yn − y(tn)| ≤ 10−6 and hn ≤ tnt2n+1, it follows

|yn+1 − y(tn+1)| ≤ 1

1 + 106hn
(10−6 + hn) = 10−6.

6.5 EXERCISE 6.9

Calculate the actual values of the coefficients of the 3-step Adams-Bashforth
method.
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Solution

The Adams-Bashforth methods are explicit multistep methods. Thus the for-
mula is

3∑
l=0

ρlyn+l = h

2∑
l=0

σlf(tn+l,yn+l).

For the Adams methods we have for the left hand side the associated polyno-
mial

ρ(w) =

3∑
l=0

ρlw
l = w2(w − 1) = w3 − w2.

For the right hand side we can write the associated polynomial as

σ(w) =

2∑
l=0

σlw
l = σ2w

2 + σ1w + σ0.

The coefficients σ0, σ1, σ2 have to be chosen such that ρ(ez)−zσ(ez) = O(z4).
Hence we have

e3z − e2z − z(σ2e
2z + σ1e

z + σ0) = 1 + 3z + 9
2z

2 + 9
2z

3 − 1− 2z − 2z2 − 4
3z

3

−zσ2

(
1 + 2z + 2z2

)
− zσ1

(
1 + z + 1

2z
2
)

−zσ0 +O(z4)

= z(1− σ0 − σ1 − σ2) + z2( 5
2 − σ1 − 2σ2)

+z3( 19
6 −

1
2σ1 − 2σ2) +O(z4).

This gives three equations which can be solved easily to give σ1 = − 4
3 , σ2 = 23

12
and σ0 = 5

12 .

6.6 EXERCISE 6.11

Show that the truncation error of methods given by

0
α α

(1− 1
2α ) 1

2α

(6.1)

is minimal for α = 2
3 . Also show that no such method has order 3 or above.

Solution

Using the short hand notation ft = ∂f
∂t and fy = ∂f

∂y , the Taylor expansion of
y about t with step h is

y(t+h) = y+hf+
1

2
h2(ft+ffy)+

1

6
h3(ftt+2ftyf+fyyf

2+ftfy+f2
y f)+O(h4)
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The steps of the method are

k1 = f(tn, yn)

k2 = f(tn + αh, yn + αhk1) = f(tn + αh, yn + αhf(tn, yn)).

The next step is given by

yn+1 = yn + h[(1− 1
2α )k1 + 1

2αk2]

= yn + h[(1− 1
2α )f(tn, yn) + 1

2αf(tn + αh, yn + αhf(tn, yn))]

= yn + h(1− 1
2α + 1

2α )f + h2α 1
2α [ft + fyf ]

+ 1
2h

3α2 1
2α [ftt + 2ftyf + fyyf

2] +O(h4)

= yn + hf + 1
2h

2[ft + fyf ] + 1
4αh

3[ftt + 2ftyf + fyyf
2] +O(h4)

So the first three terms agree with the first three terms of the Taylor expansion
of y(t + h) and cancel when the local truncation error is calculated. The h3

term of the local truncation error is given by

−1

4
αh3(ftt + 2ftyf + fyyf

2) +
1

6
h3(ftt + 2ftyf + fyyf

2 + ftfy + f2
y f)

For the choice α = 2
3 all terms apart from ftfy and f2

y f vanish. Thus unless
f is independent of y no higher order can be achieved.

6.7 EXERCISE 6.13

Consider the predictor-corrector pair given by

yPn+3 = − 1
2yn + 3yn+1 − 3

2yn+2 + 3hf(tn+2,yn+2),

yCn+3 = 1
11 [2yn − 9yn+1 + 18yn+2 + 6hf(tn+3,yn+3)].

The predictor is as in exercise 6.4.The corrector is the three step backwards
differentiation formula. Show that both methods are third order, and that the
estimate of the error of the corrector formula by Milne’s device has the value
6
17 |y

P
n+3 − yCn+3|.

Solution

Letting D be the differential operator with respect of t. Putting the true
solution into the formula of the predictor, we obtain the local truncation error
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eP as

eP = y(tn+3) + 1
2y(tn)− 3y(tn+1) + 3

2y(tn+2)− 3hf(tn+2,y(tn+2))

=
[
e3hD + 1

2 − 3ehD + 3
2e

2hD − 3hDe2hD
]
y

=
[
1 + 3hD + 9

2h
2D2 + 9

2h
3D3 + 27

8 h
4D4

+ 1
2 − 3− 3hD − 3

2h
2D2 − 1

2h
3D3 − 1

8h
4D4

+ 3
2 + 3hD + 3h2D2 + 2h3D3 + h4D4

−3hD
(
1 + 2hD + 2h2D2 + 4

3h
3D3

)
+O(h5D5)

]
y

= 1
4h

4y′′′′(tn) +O(h5).

On the other hand the local truncation error of the corrector is

eC = y(tn+3)− 1
11 (2y(tn)− 9y(tn+1) + 18y(tn+2) + 6hf(tn+3,y(tn+3)))

=
[
e3hD − 1

11

(
2− 9ehD + 18e2hD + 6hDe3hD

)]
y

=
[
1 + 3hD + 9

2h
2D2 + 9

2h
3D3 + 27

8 h
4D4

− 1
11

(
2− 9− 9hD − 9

2h
2D2 − 3

2h
3D3 − 3

8h
4D4

18 + 36hD + 36h2D2 + 24h3D3 + 12h4D4

+6hD
(
1 + 3hD + 9

2h
2D2 + 9

2h
3D3

))
+O(h5D5)

]
y

= − 3
22h

4y′′′′(tn) +O(h5).

Thus we can write

yPn+3 ≈ y(tn+3) + 1
4h

4y′′′′(tn),

yCn+3 ≈ y(tn+3)− 3
22h

4y′′′′(tn).

It follows that h4y′′′′(tn) is approximately 44
17 (yPn+3 − yCn+3). The error in the

corrector is then − 3
22

44
17 (yPn+3 − yCn+3) = 6

17 (yPn+3 − yCn+3).

6.8 EXERCISE 6.15

Consider the scalar ordinary differential y′ = f(y)|, that is f is independent
of t. It is solved by the following Runge-Kutta method

k1 = f(yn),

k2 = f(yn + (1− α)hk1 + αhk2),

yn+1 = yn + h
2 (k1 + k2),

where α is a real parameter.

(a) Express the first, second and third derivative of y in terms of f .
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(b) Perform the Taylor expansion of y(tn+1) using the expressions found in
the previous part and explain what it means for the method to be of order
p.

(c) Determine p for the given Runge-Kutta method.

(d) Define A-stability, stating explicitly the linear test equation.

(e) Suppose the Runge-Kutta method is applied to the linear test equation.
Show that then

yn+1 = R(hλ)yn

and derive R(hλ) explicitly.

(f) Show that the method is A-stable if and only if α = 1
2 .

Solution

(a) In the case when f is independent of t, i.e. y′ = f(y), we have

y′′ = f ′(y)y′ = f ′(y)f(y),

y′′′ = f ′′(y)[f(y)]2 + [f ′(y)]2f(y).

(b) The Taylor expansion is

y(tn+1) = y + hf(y) + 1
2h

2f ′(y)f(y)

+ 1
6h

3
[
f ′′(y)[f(y)]2 + [f ′(y)]2f(y)

]
+O(h4).

The method is of order p if the expansions of y(tn+1) and of yn+1 given
by the method agree for all terms up to hp such that the local error
y(tn+1)− yn+1 is O(hp+1).

(c) First we expand the stages of the Runge-Kutta method

k1 = f(yn),

k2 = f(yn) + hf ′(yn) [(1− α)k1 + αk2]

+ 1
2h

2f ′′(yn) [(1− α)k1 + αk2]
2

+O(h3).

Now

(1− α)k1 + αk2 = (1− α)f(yn) + αf(yn)

+αhf ′(yn) [(1− α)k1 + αk2] +O(h2)

= f(yn) + αhf ′(yn) [(1− α)k1 + αk2] +O(h2).
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Inserting this into the expression for k2 we obtain

k2 = f(yn) + hf ′(yn)f(yn)

+h2
[
αf ′(yn)2 [(1− α)k1 + αk2] + 1

2f
′′(yn) [(1− α)k1 + αk2]

2
]

+O(h3).

Also (1− α)k1 + αk2 = f(yn) +O(h) which can be inserted into the last
expression for k2 to give

k2 = f(yn) + hf ′(yn)f(yn)+

h2
[
α[f ′(yn)]2f(yn) + 1

2f
′′(yn)[f(yn)]2

]
+O(h3).

Now we can obtain the expansion for yn+1

yn+1 = yn + hf(yn) + 1
2h

2f ′(yn)f(yn)

+ 1
2h

3
[
α[f ′(yn)]2f(yn) + 1

2f
′′(yn)[f(yn)]2

]
+O(h4).

Assuming yn = y(tn) then comparing the two Taylor expansions we see
that the order is 2 regardless of the value of α.

(d) Suppose that a numerical method is applied to the linear test equation
y′ = λy with initial condition y(0) = 1 and produces the solution sequence
{yn}n∈Z+ for constant h. We call the set

D = {hλ ∈ C : lim
n→∞

yn = 0}

the linear stability domain of the method. The set of λ ∈ C for which

y(t)
t→∞→ 0 is the exact stability set and is the left half-plane C− = {z ∈

C : Rez < 0}. We say that the method is A-stable if C− ⊆ D.

(e) Since f(y) = λy, we have

k1 = λyn,

k2 = λ [yn + (1− α)hk1 + αhk2] .

Inserting the expression for k1 into the expression for k2 and solving for
k2 gives

k2 =
λ[1 + (1− α)hλ]yn

1− αhλ
.

Therefore

yn+1 = yn +
h

2
(k1 + k2)

=

[
1 +

h

2
(λ+

λ[1 + (1− α)hλ]

1− αhλ

]
yn

=
1 + (1− α)hλ+ ( 1

2 − α)h2λ2

1− αhλ
yn.
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Thus

R(hλ) =
1 + (1− α)hλ+ ( 1

2 − α)h2λ2

1− αhλ
.

(f) The method is A-stable if and only if |R(hλ)| < 1 for all hλ in the left
complex half plane. For α = 1

2 , then

R(hλ) =
1 + 1

2hλ

1− 1
2hλ

,

which is the stability function of the trapezoidal rule. The trapezoidal rule
is A-stable and thus is the Runge-Kutta method in this case. For α 6= 1

2 ,
we consider the real axis. As hλ approaches −∞ the (hλ)2 term will cause
the numerator to grow quicker than the denominator and hence |R(hλ)|
becomes unbounded and thus A-stability is impossible.

6.9 EXERCISE 6.17

Consider the multistep method for numerical solution of the differential equa-
tion y′ = f(t,y):

s∑
l=0

ρlyn+l = h

s∑
l=0

σlf(tn+l,yn+l), n = 0, 1, . . . .

(a) Describe in general what it means that a method is of order p?

(b) Define generally the convergence of a method.

(c) Define the stability region and A-stability in general.

(d) Describe how to determine the stability region of the multistep method.

(e) Show that the method is of order p if

s∑
l=0

ρl = 0,

s∑
l=0

lkρl = k

s∑
l=0

lk−1σl, k = 1, 2, . . . , p,

(f) Give the conditions on ρ(w) =
∑s
l=0 ρlw

l that ensure convergence.

(g) Hence determine for what values of θ and σ0, σ1, σ2 the two-step method

yn+2−(1−θ)yn+1−θyn = h[σ0f(tn,yn)+σ1f(tn+1,yn+1)+σ2f(tn+2,yn+2)]

is convergent and of order 3.
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Solution

(a) If
yn+1 = φh(tn,y0,y1, . . .yn+1)

for the time step h, then the order is the largest integer p such that

y(tn+1)− φh(tn,y(t0),y(t1), . . .y(tn+1)) = O(hp+1).

(b) Let t∗ > 0 be fixed. A method which produces for every h > 0 the solution
sequence yn = yn(h), n = 0, 1, . . . , bt∗/hc, converges, if, as h → 0 and

nk(h)h
k→∞−→ t, it is true that ynk

→ y(t), the exact solution, uniformly
for t ∈ [0, t∗].

(c) Suppose that a numerical method is applied to the test equation y′ =
λy with initial condition y(0) = 1 and produces the solution sequence
{yn}n∈Z+ for constant h. We call the set

D = {hλ ∈ C : lim
n→∞

yn = 0}

the linear stability domain of the method. The set of λ ∈ C for which

y(t)
t→∞→ 0 is the exact stability set and is the left half-plane C− = {z ∈

C : Rez < 0}. We say that the method is A-stable if C− ⊆ D.

(d) When the multistep method is applied to the test equation y′ = λy,
y(0) = 1, it reads

s∑
l=0

(ρl − hλσl)yn+l = 0.

This recurrence relation has the characteristic polynomial

τ(w) =

s∑
l=0

(ρl − hλσl)wl.

Let its zeros be w1(hλ), . . . , wN(hλ)(hλ) with multiplicities µ1(hλ), . . . ,
µN(hλ)(hλ) respectively, where the multiplicities sum to the order of the
polynomial τ . The solutions of the recurrence relation are given by

yn =

N(hλ)∑
j=1

µj(hλ)−1∑
i=0

niwj(hλ)nαij(hλ),

where αij(hλ) are independent of n but depending on the starting values
y0, . . . , ys−1. Hence the linear stability domain is the set of all hλ ∈ C such
that all the zeros of the characteristic polynomial satisfy |wj(hλ)| ≤ 1 and
if |wj(hλ)| = 1, then µj(hλ) = 1.
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(e) The order is obtained from

s∑
l=0

ρly(tn+l)− h
s∑
l=0

σly
′(tn+l) =

s∑
l=0

ρl

∞∑
k=0

(lh)k

k!
y(k)(tn)− h

s∑
l=0

σl

∞∑
k=0

(lh)k

k!
y(k+1)(tn)(

s∑
l=0

ρl

)
y(tn) +

∞∑
k=1

1

k!

(
s∑
l=0

lkρl − k
s∑
l=0

lk−1σl

)
hky(k)(tn).

Thus the difference is O(hp+1) if

s∑
l=0

ρl = 0,

s∑
l=0

lkρl = k

s∑
l=0

lk−1σl, k = 1, 2, . . . , p.

(f) The multistep method is convergent if and only if it is of order p ≥ 1 and
the polynomial ρ(w) =

∑s
l=0 ρlw

l obeys the root condition which means
all its zeros lie within |w| ≤ 1 and all zeros of unit modulus are simple
zeros. In this case the method is sometimes called zero-stable.

(g) For the multistep method given we have ρ(w) = w2 + (θ− 1)w− θ which
has roots 1 and −θ. Thus the root condition is satisfied, if θ ∈ (−1, 1].

To achieve order 3 we have ρ0 = −θ, ρ1 = θ − 1 and ρ2 = 1 and hence
ρ0 + ρ1 + ρ2 = 1 and thus the first condition is fulfilled.

The other order conditions give the equations

σ0 + σ1 + σ2 = ρ1 + 2ρ2 = θ + 1

2σ1 + 4σ2 = ρ1 + 4ρ2 = θ + 3

3σ1 + 12σ2 = ρ1 + 8ρ2 = θ + 7.

Subtracting the third equation from 3 times the second equation yields
3σ1 = 2θ + 2. Inserting this into the third equation gives 12σ2 = −θ + 5.
Thus σ1 = 2(θ + 1)/3 and σ2 = (5 − θ)/12. Inserting this into the first
equation we have σ0 = (5θ − 1)/12.

6.10 EXERCISE 6.19

We consider the autonomous scalar differential equation

d

dt
y(t) = y′(t) = f(y(t)), y(0) = y0.

Note that f is independent of t.

(a) Express the second and third derivative of y in terms of f and its deriva-
tives. Write the Taylor expansion of y(t+h) in terms of f and its deriva-
tives up to O(h4).
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(b) The differential equation is solved by the Runge-Kutta scheme

k1 = hf(yn),

k2 = hf(yn + k1),

yn+1 = yn + 1
2 (k1 + k2).

Show that the scheme is of order 2.

(c) Define the linear stability domain and A-stability for a general numerical
method, stating explicitly the linear test equation on which the definitions
are based.

(d) Apply the Runge-Kutta scheme given in (b) to the linear test equation
from part (c) and find an expression for the linear stability domain of the
method. Is the method A-stable?

(e) We now modify the Runge-Kutta scheme in the following way

k1 = hf(yn),

k2 = hf(yn + a(k1 + k2)),

yn+1 = yn + 1
2 (k1 + k2),

where a ∈ R. Apply it to the test equation and find a rational function R
such that yn+1 = R(hλ)yn.

(f) Explain the maximum modulus principle and use it to find the values of a
such that the method given in (e) is A-stable.

Solution

(a) Given the autonomous scalar differential equation

d

dt
y(t) = y′(t) = f(y(t)), y(0) = y0,

we have

d2

dt2
y(t) = y′′(t) =

d

dt
[f(y(t))] =

d

dy
f(y(t))

d

dt
y(t) = f ′(y(t))f(y(t)),

d3

dt3
y(t) = y′′′(t) =

d

dt
[f ′(y(t))f(y(t))]

=
d

dt
[f ′(y(t))]f(y(t)) + f ′(y(t))

d

dt
[f(y(t))]

=
d

dy
f ′(y(t))

d

dt
y(t)f(y(t)) + f ′(y(t))

d

dy
f(y(t))

d

dt
y(t)

= f ′′(y(t))[f(y(t))]2 + [f ′(y(t))]2f(y(t)).
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Hence

y(t+ h) = y(t) + hf(y(t) +
1

2
h2f ′(y(t))f(y(t))+

+
1

6
h3
[
f ′′(y(t))[f(y(t))]2 + [f ′(y(t))]2f(y(t))

]
+O(h4).

(b) The differential equation is solved by the Runge-Kutta Scheme

k1 = hf(yn),

k2 = hf(yn + k1),

yn+1 = yn + 1
2 (k1 + k2).

Expanding k2 gives

k2 = hf(yn + k1) = h[f(yn) + k1f
′(yn) +

1

2
k2

1f
′′(yn) +O(k3

1)]

= hf(yn) + h2f(yn)f ′(yn) +
1

2
h3[f(yn)]2f ′′(yn) +O(h4).

Assuming yn = y(tn) we get

y(tn) +
1

2
(k1 + k2) =

= y(tn) +
1

2

(
hf(y(tn)) + hf(y(tn)) + h2f(y(tn))f ′(y(tn))

+
1

2
h3[f(y(tn))]2f ′′(y(tn)) +O(h4)

)
= y(tn) + hy′(tn) +

1

2
h2y′′(tn) +

1

4
h3[f(y(tn))]2f ′′(y(tn)) +O(h4)

= y(tn + h) +O(h3),

since the h3 term does not match the third derivative term in the Taylor
expansion of y(tn + h). Thus the method is of order 2.

(c) Suppose that a numerical method is applied to the linear test equation
y′ = λy with initial condition y(0) = 1 and produces the solution sequence
{yn}n∈Z+ for constant h. We call the set

D = {hλ ∈ C : lim
n→∞

yn = 0}

the linear stability domain of the method. The set of hλ ∈ C for which

y(t)
t→∞→ 0 is the exact stability set and is the left half-plane C− = {z ∈

C : Rez < 0}. We say that the method is A-stable if C− ⊆ D.

(d)
k1 = hf(yn) = hλyn,

k2 = hf(yn + k1) = hλ(yn + k1) = hλyn + (hλ)2yn,

yn+1 = yn + 1
2 (k1 + k2) = yn + 1

2 (hλyn + hλyn + (hλ)2yn)

= yn[1 + hλ+ 1
2 (hλ)2].
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Thus

yn =

[
1 + hλ+

1

2
(hλ)2

]n
y0

and the linear stability domain is

D = {hλ ∈ C : |1 + hλ+
1

2
(hλ)2| < 1}.

The method is not A-stable, since for hλ = −2 the factor becomes 1 +
hλ + 1

2 (hλ)2 = 1 and thus yn+1 = yn = . . . = y0 = 1 and the sequence
does not tend to zero. So −2 does not lie in the linear stability domain,
but −2 ∈ C−.

(e) For the modified Runge-Kutta scheme

k1 = hf(yn) = hλyn,

k2 = hf(yn + a(k1 + k2)) = hλ(yn + a(k1 + k2))

= hλyn + a(hλ)2yn + ahλk2.

Solving the second equation for k2 we get

k2 =
1 + ahλ

1− ahλ
hλyn.

Next
yn+1 = yn + 1

2 (k1 + k2)

= yn + 1
2 (hλyn +

1 + ahλ

1− ahλ
hλyn)

= yn

[
1 + 1

2hλ
1− ahλ+ 1 + ahλ

1− ahλ

]
= yn

[
1 +

hλ

1− ahλ

]
= yn

1 + (1− a)hλ

1− ahλ
Thus the rational function R is given by

R(z) =
1 + (1− a)z

1− az
.

(f) According to the maximum modulus principle, if g is an analytic function
in the closed complex domain V , then |g| attains its maximum on the
boundary ∂V . We let g = R. If a = 0, R has no singularities. Otherwise
its only singularity is the pole 1/a, which is the root of the denominator.
Thus R is only analytic in V = {z ∈ C : Rez ≤ 0}, the closure of C−,
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if a ≥ 0. Then it attains its maximum on ∂V = iR and the following
statements are equivalent

A-stability ⇔ |R(z)| < 1, z ∈ C− ⇔ |R(it)| ≤ 1, t ∈ R.

We have

|R(it)| =
∣∣∣∣1 + (1− a)it

1− ait

∣∣∣∣ =
1 + (1− a)2t2

1 + a2t2
= 1 +

(1− 2a)t2

1 + a2t2
.

Thus to have |R(it)| ≤ 1 we need a ≥ 1/2.



C H A P T E R 7

Numerical
Differentiation
Exercises

7.1 EXERCISE 7.1

List the assumptions made in the analysis and give an example where at least
one of these assumptions does not hold. What does this mean in practice for
the approximation of derivatives?

Solution

Firstly, it was assumed that h is small enough such that the O(h2) term can
be neglected in the expression for the discretization error. Secondly it was
assumed that the calculation of the approximation does not introduce any
further error. Only the error in the representation of f(x) and f(x + h) was
considered. Another assumption is that f(x) and f(x+h) can be evaluated to
similar accuracy. We have seen when analyzing the condition of a problem that
this might not be the case. Further we assumed that both f(x) + f(x+ h) =
O(1) and f ′′(x) = O(1). If there are singularities nearby or dramatic changes
any of the assumptions may not hold. As an example consider f(x) = x30 and
evaluating f ′(x) for x = 1. The order of f(1) = 1 is O(1) and we could argue
this still for a point 1 + h close-by. However, f ′′(1) = 30× 29 = 870 = O(100)
which is larger by two magnitudes. Because of this h has to be chosen smaller.





C H A P T E R 8

PDEs Exercises

8.1 EXERCISE 8.1

Consider the PDE
auxx + 2buxy + cuyy = f,

where a > 0, b, c > 0 and f are functions of x, y, u, ux and uy. At (x, y) the
PDE is

elliptic, if b2 − ac < 0,

hyperbolic, if b2 − ac > 0 and

parabolic, if b2 − ac = 0.

Show that this definition is equivalent to the eigenvalue definition given in
lectures.

Solution

The associated matrix is

A =

(
a b
b c

)
It is symmetric and thus has real eigenvalues specified by

(a− λ)(c− λ)− b2 = 0 ⇔ λ2 − (a+ c)λ+ ac− b2.

The eigenvalues are

λ12 =
1

2
(a+ c)± 1

2

√
(a+ c)2 + 4(b2 − ac)

Then

� Both eigenvalues are positive for b2 − ac < 0⇒ elliptic.

� We have one positive and one negative eigenvalue if b2 − ac > 0 ⇒
hyperbolic.

� There is a zero eigenvalue for b2 − ac = 0⇒ parabolic
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8.2 EXERCISE 8.3

The Crank–Nicolson formula is applied to the heat equation ut = uxx on
a rectangular mesh (m∆x, n∆t), m = 0, 1, ...,M + 1, n = 0, 1, 2, ..., where
∆x = 1/(M + 1). We assume zero boundary conditions u(0, t) = u(1, t) = 0
for all t ≥ 0. Prove that the estimates umn ≈ u(m∆x, n∆t) satisfy the equation

M∑
m=1

[(un+1
m )2−(unm)2] = −1

2
µ

M+1∑
m=1

(un+1
m +unm−un+1

m−1−unm−1)2, n = 1, 2, . . . .

This shows that
∑M
m=1(unm)2 is monotonically decreasing with increasing n and

the numerical solution mimics the decaying behaviour of the exact solution.

Solution

Firstly, rearranging the Crank-Nicolson formula we have

un+1
m − unm =

1

2
µ
(
un+1
m−1 − 2un+1

m + un+1
m+1 + unm−1 − 2unm + unm+1

)
Now

(un+1
m )2 − (unm)2 = (un+1

m − unm)(un+1
m + unm)

= 1
2µ
(
un+1
m−1 − 2un+1

m + un+1
m+1 + unm−1 − 2unm + unm+1

)
(un+1
m + unm)

= − 1
2µ(un+1

m + unm − un+1
m−1 − unm−1)(un+1

m + unm)

+ 1
2µ(un+1

m+1 + unm+1 − un+1
m − unm)(un+1

m + unm)

Summing over m = 1, . . . ,M we have

M∑
m=1

[(un+1
m )2 − (unm)2] =

−1

2
µ

M∑
m=1

(un+1
m + unm − un+1

m−1 − unm−1)(un+1
m + unm)

+
1

2
µ

M∑
m=1

(un+1
m+1 + unm+1 − un+1

m − unm)(un+1
m + unm).

We can extend the summation to M + 1 in the first sum due to the zero
boundary conditions. In the second sum we change the summation index m
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by 1. Thus

M∑
m=1

[(un+1
m )2 − (unm)2] =

−1

2
µ

M+1∑
m=1

(un+1
m + unm − un+1

m−1 − unm−1)(un+1
m + unm)

+
1

2
µ

M+1∑
m=1

(un+1
m + unm − un+1

m−1 − unm−1)(un+1
m−1 + unm−1) =

−1

2
µ

M+1∑
m=1

(un+1
m + unm − un+1

m−1 − unm−1)2

8.3 EXERCISE 8.5

Determine the order of the local error of the finite difference approximation
to ∂2u/∂x∂y which is given by the computational stencil

1

(∆x)2 0 0

0

0

0

1
4− 1

4

1
4 − 1

4
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Solution

Using the same operators as in the previous exercise and inserting the true
solution into the computational stencil we obtain

1
4 [u(x+ ∆x, y + ∆x)− u(x+ ∆x, y −∆x)

+u(x−∆x, y −∆x)− u(x−∆x, y + ∆x)]

= 1
4

[
e∆xDxe∆xDy − e∆xDxe−∆xDy + e−∆xDxe−∆xDy − e−∆xDxe∆xDy

]
u(x, y)

= 1
4

[(
e∆xDx − e−∆xDx

) (
e∆xDy − e−∆xDy

)]
u(x, y)

= 1
4

[(
2∆xDx + 1

3 (∆xDx)3 +O((∆x)5)
)

×
(
2∆xDy + 1

3 (∆xDy)3 +O((∆x)5)
)]
u(x, y)

=
[
(∆x)2DxDy + 1

6 (∆x)4(D3
xDy +DxD

3
y) +O((∆x)6)

]
u(x, y).

Thus the order is O((∆x)2) because of the division by (∆x)2.

8.4 EXERCISE 8.7

Let (x̂0, x̂1, x̂2, x̂3, x̂4, x̂5, x̂6, x̂7) = (2, 0, 6,−2, 6, 0, 6, 2). By applying the in-

verse of the FFT algorithm, calculate xl =
∑7
j=0 ω

jl
8 x̂j for l = 0, 2, 4, 6, where

ω8 = exp 2iπ
8 .

Solution

20

∣∣∣∣− 4− 4i
√
i

∣∣∣∣− 4

∣∣∣∣− 4 + 4i
√
i
3
∣∣∣∣20

∣∣∣∣− 4 + 4i
√
i

∣∣∣∣− 4

∣∣∣∣− 4− 4i
√
i
3

20 |−4| − 4 |−4

8 |−4

2 6

12 |0

6 6

0 |−4i| 0 |4i

0 |0

0 0

0 |−4

−2 2

8.5 EXERCISE 8.9

The function u(x, y) = 18x(1 − x)y(1 − y), 0 ≤ x, y ≤ 1, is the solution of
the Poisson equation uxx + uyy = 36(x2 + y2 − x − y) = f(x, y), subject to
zero boundary conditions. Let ∆x = 1/6 and seek the solution of the five-point
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method

um−1,n+um+1,n+um,n−1+um,n+1−4um,n = (∆x)2f(mh, nh), 1 ≤ m,n ≤ 5,

where um,n is zero if one of m,n is 0 or 6. Let the multigrid method be applied,
using only this fine grid and a coarse grid of mesh size 1/3, and let every um,n
be zero initially. Calculate the 25 residuals of the starting vector on the fine
grid. Then, following the restriction procedure, find the residuals for the initial
calculation on the coarse grid. Solve the equations on the coarse grid exactly.
The resultant estimates of u at the four interior points of the coarse grid all
have the value 5/6. By applying the prolongation operator to these estimates,
find the 25 starting values of um,n for the subsequent iterations of Jacobi on
the fine grid. Further, show that if one Jacobi iteration is performed, then
u3,3 = 23/24 occurs, which is the estimate of u(1/2, 1/2) = 9/8.

Solution

Since the initial values are zero, the residuals are given by (∆x)2f at the 25
interior points

− 10
36 − 13

36 − 14
36 − 13

36 − 10
36

− 13
36 − 16

36 − 17
36 − 16

36 − 13
36

− 14
36 − 17

36 − 18
36 − 17

36 − 14
36

− 13
36 − 16

36 − 17
36 − 16

36 − 13
36

− 10
36 − 13

36 − 14
36 − 13

36 − 10
36

Restriction gives 4 values at the interior points of the coarse grid

− 5
3 − 5

3

− 5
3 − 5

3

The recurrence relations on the coarse grid simplify due to the zero boundary
values

u01 + u21 + u10 + u12 − 4u11 = − 5
3 ⇒ u21 + u12 − 4u11 = − 5

3

u02 + u22 + u11 + u13 − 4u12 = − 5
3 ⇒ u22 + u11 − 4u12 = − 5

3

u11 + u31 + u20 + u22 − 4u21 = − 5
3 ⇒ u11 + u22 − 4u21 = − 5

3

u12 + u32 + u21 + u23 − 4u22 = − 5
3 ⇒ u12 + u21 − 4u22 = − 5

3
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Due to symmetry the solutions are u11 = u21 = u21 = u22 = 5
6 . Prolongating

these 4 values gives
5
24

5
12

5
12

5
12

5
24

5
12

5
6

5
6

5
6

5
12

5
12

5
6

5
6

5
6

5
12

5
12

5
6

5
6

5
6

5
12

5
24

5
12

5
12

5
12

5
24

One Jacobi iteration is

u33 = −1

4
(−5

6
− 5

6
− 5

6
− 5

6
−−18

36
) =

23

24

while u( 1
2 ,

1
2 ) = 18 1

2 (1− 1
2 ) 1

2 (1− 1
2 ) = 9

8 .

8.6 EXERCISE 8.11

Let F (t) = etAetB be the first order Beam-Warming splitting of et(A+B). Gen-
erally the splitting error is of the form t2C for some matrix C. If C has large
eigenvalues the splitting error can be large even for small t. Show that

F (t) = et(A+B) +

∫ t

0

e(t−τ)(A+B)
(
eτAB −BeτA

)
eτBdτ.

(Hint: Find explicitly G(t) = F ′(t)−(A+B)F (t) and use variation of constants
to find the solution of the linear matrix ODE F ′ = (A+B)F +G, F (0) = I.)

Suppose that a matrix norm ‖·‖ is given and that there exist real constants
cA, cB and cA+B such that

‖etA‖ ≤ ecAt, ‖etB‖ ≤ ecBt, ‖et(A+B)‖ ≤ ecA+Bt.

Prove that

‖F (t)− et(A+B)‖ ≤ 2‖B‖e
(cA+cB)t − ecA+Bt

cA + cB − cA+B
.

Hence, for cA, cB ≤ 0, the splitting error remains relatively small even for
large t. (ecA+Bt is an intrinsic error.)

Solution

Since F (t) = etAetB , the derivative is F ′(t) = AetAetB + etABetB by the
product rule. Subtracting (A+B)F (t) gives

G(t) = AetAetB + etABetB − (A+B)etAetB

= etABetB −BetAetB .
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The ODE F ′ = (A+B)F+G, F (0) = I has the solution of the form et(A+B)c(t)
which has the derivative

F ′(t) = (A+B)et(A+B)c(t) + et(A+B)c′(t)

= (A+B)F (t) + G(t)

Thus
c′(t) = e−t(A+B)G = e−t(A+B)(etAB −BetA)etB

which has the solution

c(t) = c+

∫ t

0

e−τ(A+B)(eτAB −BeτA)eτBdτ.

Hence F is given by

F (t) = cet(A+B) +

∫ t

0

e(t−τ)(A+B)
(
eτAB −BeτA

)
eτBdτ.

The initial condition F (0) = I specifies the additive constant as c = 1.
For the second part of the question

‖F (t)− et(A+B)‖ = ‖
∫ t

0

e(t−τ)(A+B)
(
eτAB −BeτA

)
eτBdτ‖

≤
∫ t

0

‖e(t−τ)(A+B)‖ ‖eτAB −BeτA‖ ‖eτB‖dτ

≤
∫ t

0

‖et(A+B)‖ ‖e−τ(A+B)‖ 2 ‖B‖ ‖eτA‖ ‖eτB‖dτ

Now ‖etA‖ ≤ ecAt, ‖etB‖ ≤ ecBt, ‖et(A+B)‖ ≤ ecA+Bt and hence

‖F (t)− et(A+B)‖ ≤ ecA+Bt2‖B‖
∫ t

0

e(cA+cB−cA+B)τdτ

= 2‖B‖ecA+Bt
1

cA + cB − cA+B

[
e(cA+cB−cA+B)τ

]t
0

= 2‖B‖e
(cA+cB)t − ecA+Bt

cA + cB − cA+B
.

8.7 EXERCISE 8.13

The diffusion equation

∂u

∂t
=

∂

∂x

(
a(x)

∂u

∂x

)
, 0 ≤ x ≤ 1, t ≥ 0,

with the initial condition u(x, 0) = φ(x), 0 ≤ x ≤ 1 and zero boundary condi-
tions for x = 0 and x = 1, is solved by the finite difference method

un+1
m = unm + µ

[
am− 1

2
unm−1 − (am− 1

2
+ am+ 1

2
)unm + am+ 1

2
unm+1

]
,
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where m = 1, . . . ,M , µ = ∆t/(∆x)2 is constant, ∆x = 1
M+1 and unm approx-

imates u(m∆x, n∆t). The notation aα = a(α∆x) is employed.

(a) Assuming sufficient smoothness of the function a, show that the local error
of the method is at least O((∆x)3). State which expansions and substitu-
tions you are using.

(b) Remembering the zero boundary conditions, write the method as

un+1 = Aun

giving a formula for the entries Ak,l of A. From the structure of A what
can you say about the eigenvalues of A?

(c) Describe the eigenvalue analysis of stability.

(d) Assume that there exist finite positive constants a− and a+ such that
for 0 ≤ x ≤ 1 a(x) lies in the interval [a−, a+]. Prove that the method is
stable for 0 < µ ≤ 1

2a+
. (Hint: You may use without proof the Gerschgorin

theorem: All eigenvalues of the matrix A are contained in the union of the
Gerschgorin discs given for each k = 1, . . . ,M by

{z ∈ C : |z −Ak,k| ≤
M∑

l=1,l 6=k

|Ak,l|}.)

Solution

(a) We employ the differential operators

Dt =
∂

∂t
and Dx =

∂

∂x
.

The partial differential equation can then be rewritten as

Dtu = Dx[aDxu] = DxaDxu+ aD2
xu.
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The local error is given by

(e∆tDt − I)u− µ
[
e−

1
2 ∆xDxae−∆xDxu− (e−

1
2 ∆xDx + e

1
2 ∆xDx)au

+e
1
2 ∆xDxae∆xDxu

]
= (e∆tDt − I)u− µ

[
−(e−

1
2 ∆xDx + e

1
2 ∆xDx)au

+e−
1
2 ∆xDxa(I −∆xDx + 1

2 (∆xDx)2 − 1
6 (∆xDx)3 +O((∆x)4))u

+e
1
2 ∆xDxa(I + ∆xDx + 1

2 (∆xDx)2 + 1
6 (∆xDx)3 +O((∆x)4))u

]
= (e∆tDt − I)u− µ

[
(e−

1
2 ∆xDx − e 1

2 ∆xDx)a(∆xDx + 1
6 (∆xDx)3)u

+(e−
1
2 ∆xDx + e

1
2 ∆xDx)a( 1

2 (∆xDx)2)u
]

+O((∆x)4)

= (e∆tDt − I)u

−µ
[
(2 1

2∆xDx + 2 1
6 ( 1

2∆xDx)3 +O((∆x)5))a(∆xDx + 1
6 (∆xDx)3)u

+ (2 + 2 1
2 ( 1

2∆xDx)2 +O((∆xDx)4))a( 1
2 (∆xDx)2)u

]
+O((∆x)4)

= ∆tDtu+O((∆t)2)− ∆t
(∆x)2

[
(∆x)2DxaDxu+ (∆x)2aD2

xu+O((∆x)4)
]

= ∆t(Dtu−DxaDxu− aD2
xu) +O(∆t(∆x)2) = O((∆x)4),

where we used O((∆t)2) = O((∆x)4).

(b) In matrix form we have un+1 = Aun. Note that the dimensions of A and
un, n = 0, . . ., depend on ∆x. The entries of A are

Ak,k = 1− µ(ak− 1
2

+ ak+ 1
2
),

Ak,k−1 = µak− 1
2
,

Ak,k+1 = µak+ 1
2
,

Ak,l = 0 for |k − l| > 1.

The matrix A is symmetric and therefore has real eigenvalues.

(c) By induction we have

‖un‖ = ‖Anu0‖ ≤ ‖An‖‖u0‖ ≤ ‖A‖n‖u0‖.

Thus the numerical solution does not grow as long as ‖A‖ ≤ 1. For normal
matrices the Euclidean matrix norm is the spectral radius. Hence we have
stability for all starting vectors u0, if all eigenvalues reside in the closed
complex unit disc, since then ‖A‖ ≤ 1.

(d) For the given A the Gerschgorin discs for each k = 1, . . . ,M are

{z ∈ C : |z − 1 + µ(ak− 1
2

+ ak+ 1
2
)| ≤ µ(ak− 1

2
+ ak+ 1

2
)}.

The centre of the Gerschgorin discs lies at 1−µ(ak− 1
2

+ak+ 1
2
) with radius
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µ(ak− 1
2

+ ak+ 1
2
), since a is a positive function. All Gerschgorin discs lie

within the unit disc if and only if 1 − 2µ(ak− 1
2

+ ak+ 1
2
) ≥ −1 for all

k = 1, . . . ,M . Now ak− 1
2

+ ak+ 1
2
≤ 2a+. Hence we need 1 − 4µa+ ≥ −1

and therefore µ ≤ 1
2a+

.

8.8 EXERCISE 8.15

Consider the advection equation

∂u

∂t
=
∂u

∂x

for x ∈ [0, 1] and t ∈ [0, T ].

(a) What does it mean, if a partial differential equation is well posed?

(b) Define stability for time marching algorithms for PDEs.

(c) Derive the eigenvalue analysis of stability.

(d) Define the forward difference operator ∆+, the central difference operator
δ and the averaging operator µ0 and calculate the operator defined by δµ0.

(e) In the solution of partial differential equations often matrices occur which
are constant on the diagonals. Let A be an M ×M matrix of the form

A =


a b
−b a

. . .
. . . b
−b a

 ,

that is Ai,i = a,Ai,i+1 = b, Ai+1,i = −b and Ai,j = 0 otherwise. The
eigenvectors of A are v1, . . . ,vM where the j-th component of vk is given
by (vk)j = ıj sin πjk

M+1 , where ı =
√
−1. Calculate the eigenvalues of A by

evaluating Avk (Hint: sin(x± y) = sinx cos y ± cosx sin y).

(f) The advection equation is approximated by the following Crank-Nicolson
scheme

un+1
m − unm =

1

4
µ(un+1

m+1 − u
n+1
m−1) +

1

4
µ(unm+1 − unm−1),

where µ = ∆t/∆x and ∆x = 1/(M + 1). Assuming zero boundary condi-
tions, that is u(0, t) = u(1, t) = 0, show that the scheme can be written in
the form

Bun+1 = Cun,

where un =
(
un1 . . . unM

)T
. Specify the matrices B and C.

(g) Calculate the eigenvalues of A = B−1C and their moduli.

(h) Deduce the range of µ for which the method is stable.
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Solution

(a) A PDE problem is said to be well posed if

� a solution to the problem exists,

� the solution is unique, and

� the solution (in a compact time interval) depends in a uniformly
bounded manner on the initial conditions.

(b) A numerical method for a PDE is stable if for zero boundary conditions
it produces a uniformly bounded approximation of the solution in any
bounded interval of the form 0 ≤ t ≤ T , when ∆x → 0 and the Courant
number µ is constant.

(c) If a numerical method (for a PDE with zero boundary conditions) can be
written in the form

un+1
∆x = A∆xu

n
∆x,

where un∆x ∈ RM and A∆x is an M ×M matrix. By induction we have
un∆x = (A∆x)nu0

∆x. For any vector norm ‖·‖ and the induced metric norm

‖A‖ = sup ‖Ax‖
‖x‖ we have

‖un∆x‖ = ‖(A∆x)nu0
∆x‖ ≤ ‖(A∆x)n‖‖u0

∆x‖ ≤ ‖(A∆x)‖n‖u0
∆x‖.

Stability can now be defined as preserving the boundedness of un∆x with
respect to the chosen norm ‖ · ‖, and it follows from the inequality above
that the method is stable if

‖A∆x‖ ≤ 1.

Usually the norm ‖ · ‖ is chosen to be the Euclidean length. For normal
matrices (i.e. matrices which have a complete set of orthonormal eigen-
vectors) the Euclidean norm of the matrix equals the spectral radius, i.e.
‖A‖ = ρ(A), which is the maximum modulus of the eigenvalues and we
arrive at the eigenvalue analysis of stability. That is the method is stable,
if the maximum modulus of the eigenvalues of A∆x is less than one.

(d) The forward difference operator ∆+ is given by ∆+f(x) = f(x+h)−f(x),
the central difference operator δ is defined by δf(x) = f(x+ 1

2h)−f(x− 1
2h)

and lastly the averaging operator µ0 is defined by µ0f(x) = 1
2 (f(x+ 1

2h)+
f(x− 1

2h)). The operator defined by δµ0 is δµ0f(x) = 1
2 (f(x+h)−f(x−h).

(e) Given

A =


a b
−b a

. . .
. . . b
−b a

 ,
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and vk with (vk)j = ij sin πjk
M+1 , the j-th component of Avk is given by

(Avk)j = −bij−1 sin π(j−1)k
M+1 + aij sin πjk

M+1 + b sin ij+1 sin π(j+1)k
M+1

= aij sin πjk
M+1 + bij [−i−1(sin πjk

M+1 cos πk
M+1 − cos πjk

M+1 sin πk
M+1 )

+i(sin πjk
M+1 cos πk

M+1 + cos πjk
M+1 sin πk

M+1 )]

= (a+ 2ib cos πk
M+1 )ij sin πjk

M+1 ,

since −i−1 = i and where we used sin(x±y) = sinx cos y±cosx sin y with
x = πjk

M+1 and y = πk
M+1 . Thus the eigenvalues are λk = a + 2ib cos πk

M+1 ,
k = 1, . . . , n.

(f) Rearranging the Crank-Nicolson scheme given by

un+1
m − unm =

1

4
µ(un+1

m+1 − u
n+1
m−1) +

1

4
µ(unm+1 − unm−1),

leads to

un+1
m − 1

4
µ(un+1

m+1 − u
n+1
m−1) = unm +

1

4
µ(unm+1 − unm−1).

Hence the scheme can be written in the form

Bun+1 = Cun,

where

B =


1 − 1

4µ
1
4µ 1

. . .
. . . − 1

4µ
1
4µ 1

 , C =


1 1

4µ
− 1

4µ 1
. . .

. . . 1
4µ

− 1
4µ 1

 .

(g) The matrices B and C are of the form given in the first part of the question
and therefore have the same set of eigenvectors v1, . . . ,vM . These are also
eigenvectors of B−1, since

Bvk = (1 + 2i(−1

4
µ) cos

πk

n+ 1
)vk = (1− 1

2
iµ cos

πk

M + 1
)vk

and it follows that

B−1vk =
1

1− 1
2 iµ cos πk

M+1

vk.

By the same argument the eigenvalues of A = B−1C are

λk =
1 + 1

2 iµ cos πk
M+1

1− 1
2 iµ cos πk

M+1

.

Since the numerator of λk is the complex conjugate of the denominator
of λk it follows that |λk| = 1 for all µ.

(h) Therefore the method is stable for all µ > 0.
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8.9 EXERCISE 8.17

Assume a numerical scheme is of the form

s∑
k=−r

αku
n+1
m+k =

s∑
k=−r

βku
n
m+k, m ∈ Z, n ∈ Z+,

where the coefficients αk and βk are independent of m and n.

(a) The approximations unm, m ∈ Z, are an infinite sequences of numbers.
Define the Fourier transform ûn(θ) of this sequence.

(b) Derive the Fourier analysis of stability. In the process give a definition of
the amplification factor.

(c) Prove that the method is stable if the amplification factor is less than or
equal to 1 in modulus.

(d) Find the range of parameters µ such that the method

(1− 2µ)un+1
m−1 + 4µun+1

m + (1− 2µ)un+1
m+1 = unm−1 + unm+1

is stable, where µ = ∆t/∆x2 > 0 is the Courant number. (Hint: Sub-
stitute x = cos θ and check whether the amplification factor can become
unbounded and consider the gradient of the amplification factor.)

(e) Suppose the above method is used to solve the heat equation

∂u

∂t
=
∂2u

∂x2
.

Express the local error as a power of ∆x.

Solution

(a) Let un = (unm)m∈Z be a sequence of numbers. The Fourier transform of
this sequence is the function

ûn(θ) =
∑
m∈Z

unme
−imθ, −π ≤ θ ≤ π.

(b) Multiplying

s∑
k=−r

αku
n+1
m+k =

s∑
k=−r

βku
n
m+k, m ∈ Z, n ∈ Z+
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by e−imθ and summing over m ∈ Z, gives for the left-hand side∑
m∈Z

e−imθ
s∑

k=−r

αku
n+1
m+k =

s∑
k=−r

αk
∑
m∈Z

e−imθun+1
m+k

=

s∑
k=−r

αk
∑
m∈Z

e−i(m−k)θun+1
m =

(
s∑

k=−r

αke
ikθ

)∑
m∈Z

e−imθun+1
m

=

(
s∑

k=−r

αke
ikθ

)
ûn+1(θ).

Similarly the right hand side is
(∑s

k=−r βke
ikθ
)
. It follows that

ûn+1(θ) = H(θ)ûn(θ) where H(θ) =

∑s
k=−r βke

ikθ∑s
k=−r αke

ikθ
.

The function H is called the amplification factor.

(c) The definition of stability says that there exists C > 0 such that ‖un‖ ≤ C
for all n ∈ Z. Since the Fourier transform is an isometry, this is equivalent
to ‖ûn‖ ≤ C for all n ∈ Z. Iterating we deduce

ûn+1(θ) = [H(θ)]n+1û0(θ), θ ∈ [−π, π], n ∈ Z+.

If |H(θ)| ≤ 1 for all θ ∈ [−π, π], then by the above equation |ûn(θ)| ≤
|û0(θ)| and it follows that

‖ûn‖2 =
1

2π

∫ π

−π
|ûn(θ)|2dθ ≤ 1

2π

∫ π

−π
|H(θ)|2n|û0(θ)|2dθ

≤ 1

2π

∫ π

−π
|û0(θ)|2dθ = ‖û0‖2

and hence we have stability.

(d) For
(1− 2µ)un+1

m−1 + 4µun+1
m + (1− 2µ)un+1

m+1 = unm−1 + unm+1

we have r = s = 1 and α−1 = α1 = (1− 2µ), α0 = 4µ and β−1 = β1 = 1,
β0 = 0. This gives

H(θ) =
e−iθ + eiθ

4µ+ (1− 2µ)(e−iθ + eiθ)
=

2 cos θ

4µ+ (1− 2µ)2 cos θ

=
cos θ

2µ+ (1− 2µ) cos θ
.

Since θ ∈ [−π, pi], it sufficient to find the range of µ such that y(x) ∈
[−1, 1] for x ∈ [−1, 1], where

y(x) =
x

2µ+ (1− 2µ)x
.
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The derivative is

y′(x) =
2µ+ (1− 2µ)x− x(1− 2µ)

(2µ+ (1− 2µ)x)2
=

2µ

(2µ+ (1− 2µ)x)2
> 0.

Thus the function is monotonically increasing for all x. However, the de-
nominator becomes zero for

x =
−2µ

1− 2µ
=

1

1− 1
2µ

and we have a vertical asymptote where y tends to infinity. For µ ∈ [0, 1/4]
this asymptote lies between −1 and 0 and thus the method is not stable for
this choice of µ. For µ > 1/4, we have y(1) = 1 and y(−1) = 1/(1− 4µ).
Since y is monotonically increasing, we have y(x) ∈ [1/(1 − 4µ), 1] for
x ∈ [−1, 1]. To have stability we need 1/(1 − 4µ) ≥ −1. From µ > 1/4
follows 1− 4µ < 0 and hence

1/(1− 4µ) ≥ −1⇔ 1 ≤ −1 + 4µ⇔ 1

2
≤ µ.

Thus the method is stable for all µ ≥ 1/2.

(e) To determine the local error we use the operators Dt = ∂
∂t and Dx = ∂

∂x .
For the diffusion equation we have Dt = D2

x and since the Courant number
is constant ∆t = µ∆x2. A shift can then be expressed as e∆tDt or e±∆xDx .
Thus applying the numerical scheme to the true solution[

e∆tDt
[
(1− 2µ)

(
e−∆xDx + e+∆xDx

)
+ 4µ

]
−
(
e−∆xDx + e+∆xDx

)]
u(x, t)

=
[(
e−∆xDx + e+∆xDx

) (
e∆tDt − 2µe∆tDt − 1

)
+ 4µe∆tDt

]
u(x, t)

=
[(
e−∆xDx + e+∆xDx

) (
1 + ∆tDt + 1

2∆t2D2
t +O(∆t3)

−2µe∆tDt − 1
)

+ 4µe∆tDt
]
u(x, t)

=
[(

2 + ∆x2D2
x + 1

12∆x4D4
x +O(∆x6)

) (
µ∆x2D2

x + 1
2µ

2∆x4D4
x

+O(∆x6)− 2µe∆tDt
)

+ 4µe∆tDt
]
u(x, t)

=
[(

∆x2D2
x + 1

12∆x4D4
x +O(∆x6)

) (
µ∆x2D2

x + 1
2µ

2∆x4D4
x

+O(∆x6)− 2µe∆tDt
)

+ 2µ∆x2D2
x + µ2∆x4D4

x +O(∆x6)

−4µe∆tDt + 4µe∆tDt
]
u(x, t)

=
[(

∆x2D2
x + 1

12∆x4D4
x +O(∆x6)

) (
µ∆x2D2

x + 1
2µ

2∆x4D4
x

+O(∆x6)− 2µ− 2µ∆tDt − µ∆t2D2
t +O(∆t3)

)
+ 2µ∆x2D2

x

+µ2∆x4D4
x +O(∆x6)

]
u(x, t)
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=
[(

∆x2D2
x + 1

12∆x4D4
x +O(∆x6)

) (
µ(1− 2µ)∆x2D2

x

+µ2( 1
2 − µ)∆x4D4

x +O(∆x6)− 2µ
)

+ 2µ∆x2D2
x

+µ2∆x4D4
x +O(∆x6)

]
u(x, t)

=
[
−2µ∆x2D2

x + 2µ∆x2 + µ(1− 2µ)∆x4D4
x − 1

122µ∆x4D4
x

+µ2∆x4D4
x +O(∆x6)

]
u(x, t)

= ( 5
6µ− µ

2)∆x4D4
x +O(∆x6)

8.10 EXERCISE 8.19

We consider the diffusion equation with variable diffusion coefficient

∂u

∂t
=

∂

∂x
(a
∂u

∂x
),

where a(x), x ∈ [−1, 1] is a given differentiable function. The initial condition
for t = 0 is given, that is u(x, 0) = u0(x) and we have zero boundary conditions
for x = −1 and x = 1, that is u(−1, t) = 0 and u(1, t) = 0, t ≥ 0.

(a) Given space discretization step ∆x and time discretization step ∆t, the
following finite difference method is used

un+1
m = unm + µ

[
am−1/2u

n
m−1 − (am−1/2 + am+1/2)unm + am+1/2u

n
m+1

]
,

where am±1/2 = a(−1 + m∆x ± ∆x/2) and unm approximates u(−1 +
m∆x, n∆t) and µ = ∆t/(∆x)2 is constant. Show that the local error is at
least O(∆x4).

(b) Derive the matrix A such that the numerical method given in (a) is written
as

un+1 = Aun.

(c) Since the boundary conditions are zero, the solution may be expressed in
terms of periodic functions. Therefore the differential equation is solved
by spectral methods letting

u(x, t) =

∞∑
n=−∞

ûn(t)eiπnx and a(x) =

∞∑
n=−∞

âne
iπnx.

Calculate the first derivative of u with regards to x.

(d) Using convolution calculate the product

a(x)
∂u(x, t)

∂x
.
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(e) By differentiating the result in (d) again with regards to x and truncating,
deduce the system of ODEs for the coefficients ûn(t). Specify the matrix
B such that

d

dt
û(t) = Bû(t)

(f) Let a(x) be constant, that is a(x) = â0. What are the matrices A and B
with this choice of a(x)?

(g) Let

a(x) = cosπx =
1

2
(eıπx + e−ıπx).

What are the matrices A and B with this choice of a(x)? (Hint: cos(x −
π) = − cosx and cos(x− y) + cos(x+ y) = 2 cosx cos y.)

Solution

(a) We consider the diffusion equation with variable diffusion coefficient

∂u

∂t
=

∂

∂x
(a
∂u

∂x
).

Let Dt and Dx denote the operators representing differentiation in the t
and x direction respectively. We can rewrite the equation as

Dtu = Dx(aDxu) = DxaDxu+ aD2
xu.

Note ∆t = µ∆x2. Applying the numerical method to the true solution
gives[
e∆tDt − I

]
u = µ

[
e−(∆x/2)Dxae−∆xDxu− (e−(∆x/2)Dx + e(∆x/2)Dx)au

+e(∆x/2)Dxae∆xDxu
]
.

The left hand side simplifies to

∆tDtu+O(∆t2) = ∆tDtu+O(∆x4).
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The term in the square brackets on the right hand side becomes

e−(∆x/2)Dxa(1−∆xDx +
1

2
∆x2D2

x −
1

6
∆x3D3

x)u

+e(∆x/2)Dxa(1 + ∆xDx +
1

2
∆x2D2

x +
1

6
∆x3D3

x)u

−(e−(∆x/2)Dx + e(∆x/2)Dx)a+O(∆x4)

= (∆xDx +
1

6
∆x3D3

x)u(e(∆x/2)Dx − e−(∆x/2)Dx)a

+
1

2
∆x2D2

xu(e−(∆x/2)Dx + e(∆x/2)Dx)a+O(∆x4)

= (∆xDx +
1

6
∆x3D3

x)u(∆xDx + 2
1

6
(∆x/2)3D3

x)a

+
1

2
∆x2D2

xu(2 + 2
1

2
(∆x/2)2D2

x)a+O(∆x4)

= ∆x2(DxuDxa+ aD2
xu) +O(∆x4)

Using ∆t = µ∆x2 and the original differential equation we see that the
local error is O(∆x4).

(b) The matrix A such that the numerical method given above is written as

un+1 = Aun

has entries
Akk = 1− µ(ak−1/2 + ak+1/2),

Akk−1 = µak−1/2,

Akk+1 = µak+1/2,

with Akj = 0 if |k − j| ≥ 2. Thus it is tridiagonal.

(c) Letting

u(x, t) =

∞∑
n=−∞

ûn(t)eiπnx and a(x) =

∞∑
n=−∞

âne
iπnx,

the first derivative of u with regards to x is

∂u(x, t)

∂x
=

∞∑
n=−∞

ûn(t)iπneiπnx.

(d) Using convolution we have

a(x)
∂u(x, t)

∂x
=

∞∑
n=−∞

( ∞∑
m=−∞

ân−miπmûm(t)

)
eiπnx.
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(e) Differentiating again we deduce the following system ODEs for the coef-
ficients ûn

û′n(t) = −π2

N/2∑
m=−N/2+1

nmân−mûm(t), n = −N/2 + 1, . . . , N/2.

The matrix B has the entries

Bnm = −π2nmân−m.

(f) For a(x) constant, that is a(x) = â0, A has the entries

Akk = 1− 2µâ0,

Akk−1 = µâ0,

Akk+1 = µâ0,

with Akj = 0 if |k − j| ≥ 2. It is a tridiagonal, symmetric Toeplitz (TST)
matrix that is it is constant along the diagonals. The matrix B on the
other hand is diagonal with diagonal entries

Bnn = −π2n2â0.

(g) For

a(x) = cosπx =
1

2
(eıπx + e−ıπx).

A has entries

Akk = 1− µ(cosπ(−1 + k∆x−∆x/2) + cosπ(−1 + k∆x+ ∆x/2))

= 1 + µ(cos(k − 1/2)∆xπ + cos(k + 1/2)∆xπ)

= 1 + 2µ cos k∆xπ cos ∆xπ/2,

Akk−1 = −µ cos(k − 1/2)∆xπ,

Akk+1 = −µ cos(k + 1/2)∆xπ,

with Akj = 0 if |k − j| ≥ 2. On the other hand â−1 = â1 = 1/2 while
ân = 0 for all n 6= −1, 1. Thus B has entries

Bkk = 0,

Bkk−1 = Bkk+1 = − 1
2π

2k(k − 1),

with Bkj = 0 if |k − j| ≥ 2. Here B is a TST matrix.


