Copyright Taylor & Francis 2018.

General Relativity

A.1 Chapter Overview

These general relativity (GR) problems have been added after requests from readers,
and extend the problems in special relativity in Chapter 5. These problems deal with
the visualization of wormholes, the deflection of starlight by the sun, the gravitational
lensing by highly massive stars, and the motion of a particle in a Newtonian potential
with a GR correction, and the computation of some GR quantities.

A.2 Visualizing Wormholes

During Christopher Nolan’s direction of the science fiction movie Interstellar, Kip
Thorne (now a Noble laureate) helped develop the visualizations of rocket flight based
on solutions of the equations of Einstein’s theory of general relativity. The key element
of the movie was that interstellar travel was possible in a single human lifetime if a
spaceship passed through a wormhole (an Einstein—Rosen bridge), a tunnel-like struc-
ture in spacetime that connects one location in spacetime to another, or possibly to
another universe [James et al. (15)]. Fig.(A.1) is the visualization of such a wormhole.

Although wormholes have never been observed, they may occur as quantum fluc-
tuations on the Planck scale, \/Gh/c3 ~ 10735 m. Furthermore, it just might be
possible to have some type of exotic matter with negative energy density at the throat
of the wormhole that would enlarge the wormhole to a macroscopic size that might
permit a rocket ship pass through it. However, if our 4-D universe resided in a higher-
dimensional space (bulk), such as the 5-D one imagined in Interstellar, then there
might not be the need for exotic matter to hold the wormhole open. In either case,
interstellar travel can be imagined to be possible. While all of this is unlikely (it is
called science fiction after all), it is not strictly forbidden.

Morris and Thorn [Morris, M. S., K. S. Thorne, Wormholes in spacetime and their use for inter-
stellar travel: A tool for teaching General Relativity, Am. J. Phys., 56, 395-412, (1988).] discuss the
fundamentals of space travel using wormholes as an exercise in general relativity. Your
problem is to reproduce some stills of the wormhole visualizations that were created

375

Copyright Taylor & Francis 2018.

376 Web Materials

Figure A.1. The Ellis wormhole connecting an upper and lower (flatter) spaces. Note that
this visualization has the wormhole’s 4-D bulk embedded within a 3-D space. The throat
diameter is 2p and the proper distance traveled in a radial direction is ¢.

for the movie. As an alternative, you can reproduce some of the (different) visualiza-
tions found in [T. A. Roman, The inflated wormhole: A MATHEMATICA animation, Comp. in Phys.,
480-487, (1994).]. You will not be asked to actually solve Einstein’s equations, although we
would encourage you to do so. Another extension would be the creation of videos that
visualize what travel through a wormhole would look like if recorded by a camera on
the space ship, or from outside the wormhole. Some such visualizations from the Inter-
stellar movie can be found on Youtube [https://www.youtube.com/watch?v=Ff3ptQOCPMmU.].

The equations that Thorne used to create the visualizations were expressed in
geometrized units in which G = 1, ¢ = 1, time is measured in length 1s = c¢*x 1 =
2.998 x 10® m, mass is also measured in length units, 1 kg= G//c?>x 1 kg, so that 1 kg
= 0.742 x 10727 m, in which case the Sun’s mass = 1.476 km. The wormbhole consists
of a 4-D cylinder with length 2a whose cross sections are spheres of radius p. In order
to visualize the 4-D wormhole, it is embedded in a 3-D space so that the cross section
are circles of radius p. The ends of the cylinder connect to flat 3-D spaces.

Thorne uses the Ellis extension of a spherical polar coordinates metric:

ds? = —dt? + di® + r*(d6? + sin? 0d¢?). (A1)

Here the radius coordinate r is a function of ¢, the physical distance (proper distance)

Copyright Taylor & Francis 2018.

A. General Relativity 377

traveled in a radial direction:
r(l) =/ p? + 02, (A.2)

where p is the radius of the throat in a cylindrical-shaped wormhole. Note that the
time coordinate t enters the metric (A.1) with a negative sign. This means that for
fixed ¢, 6, and ¢, t increases in the timelike direction. Accordingly, ¢ is the proper
time as measured by a person at rest in the spatial (¢, 6, ¢) coordinate system.

Because r2(df? +sin? 0d$?) is the familiar metric describing the surface of a sphere
of radius r, the wormhole is spherically symmetric. This means that when | — +oo,
as well as when | — —oo, the radius of the sphere within the wormhole approaches
proper distance ¢. This also means that as [— d+oco we would have two separate
flat spaces connected by the wormhole. The transition between the two flat spaces
via the wormhole’s throat is made to resemble the transition to an external space in
which a nonspinning black hole resides. This is described by the Schwarzschild or hole
metric [James et al. (15)]:

dr?

2 1 2
ds* = —(1—2M/r)dr +172M/r

+ 7% (d6* + sin” 0 dp?), (A.3)
where M is the black hole’s mass. With this metric, the radius r becomes the outward
coordinate rather than the proper distance £. The visualizations in the movie required
a solution for r(¢), that is, a solution or an expression for the outward coordinate as a
function of proper distance. To reduce the effort involved, the visualizations used an

analytic expression for r(¢) outside the wormhole’s cylindrical interior that is similar
to the Schwarzschild r(£):

2 [lf=a 2
r(ll] > a) = p+ ;/ arctan(%) i (A4)
0
— 1 2 . 2 |€‘ —a
—p+/\/l[xarctanx—§ln(1+x)}, = (A.5)

For cylindrical coordinates, the z coordinate is the embedding space height above
the wormhole’s midplane, and so the embedding space metric becomes

ds? = dz* + dr? + r* d¢*. (A.6)

In this case, the spatial metric of the wormhole’s two-dimensional equatorial surface
becomes:

ds? = de® + r2(0) dg>. (A7)

Combining these equations lets us solve for z(¢):

dz? 4 dr? = d(?, (A.8)

L
A(0) = /O 1= (dr/dL)? dL. (A.9)

Copyright Taylor & Francis 2018.

378 Web Materials

You obtain the equations needed to program up the visualization of a wormhole by
substituting (A.4) and (A.5) into (A.9).

1. In order to apply (A.9) we need to evaluate the derivative dr/d¢. Use Python’s
symbolic algebra package sympy to show that

dr 2 (2l—a

Our program WormHole.py in Listing A.1 evaluates this derivative.

2. Insert this dr/d¢ into (A.9) and evaluate the z(l) integral numerically for

p=1, a=1 M=05. (A.11)

3. The contour lines or rings shown in Fig. A.1 correspond to different values of £.
They were obtained by using Vpython in a Jupyter notebook with the program
VisualWorm.ipynb given in Listing A.21.

4. Make your own plot of the wormhole for £ =1,--- 11.

5. Create a cylindrical wormhole of length 2L with a spherical cross sections of
radius p. Visualize the wormhole with a 3-D embedding diagram in which the
missing dimension results in the cross sections appearing as circles rather than
spheres. Follow the same steps as used for the Ellis wormhole, (A.1), but now
with

(A.12)

r(l) = Dy |¢| < L (Wormbhole interior),
W -L+p, [(|>L (Wormhole exterior)

A.3 Gravitational Deflection of Light

A geodesic is the shortest path between two points on a curved surface. General
relativity assumes that light travels on geodesics, which are curved paths in a 4-D
spacetime. To determine a geodesic, one starts with the infinitesimal 4-D path length
(interval)

ds® = c2dt* — da® — dy* — dz*. (A.13)

Since light travel a distance ct in time ¢, the interval vanishes for light, and its path is
therefore called a null geodesic. Since material particles move slower than light, their
interval is positive (time-like). The path that light takes in spacetime is the solution

of the geodesic equation
d%zP g dat dz”

a2 TN T

1While the previous version of Vpython explicitly called the Visual package and was run via an
editor, we have been able to run the latest Vpython only within a Jupyter notebook.

—0. (A.14)

Copyright Taylor & Francis 2018.

A. General Relativity 379

Here Fﬁu is the Christoffel symbol and would be obtained by solving the curvature
equation R,, = 0 for a given metric tensor g,,. The curvature equation turns out to
be a rather formidable set of ten nonlinear PDE’s, which we are happy to leave for
another time.

Figure A.2. A light ray being bent by an angle ¢ due to the gravitational effect of the sun.

One of the early tests of general relativity was its prediction of the angle of de-
flection ¢ for light starting at an impact parameter b = R and just grazing the sun
(Figure A.2). At first Newtonian mechanics solved this problem by calculating the
orbit of a massive particle around the sun, and then taking the m — 0 limit for the
particle to obtain

(A.15)

Here G is the gravitational constant, M is the mass of the sun, and R is the radius
of the sun. Later, Einsteinian mechanics was used to solve (A.14) approximately and
obtained twice as large a value,

GM

¢ = 4@7 (A.16)

which agreed with the measurements.

Now let’s try to calculate some numerical values for the deflection. In 1916
Schwarzschild found an exact solution of the Einsteinian equations using Schwarzschild
metric [Moore(13)],

2GM 2GM\
ds? = (1 _ 2) Adt? — (1 _) dr? —r?(df? + sin® 0d¢?). (A.17)

c2r c2r

For this metric and for light just grazing the sun (b = R), the orbit equation takes the

simple form
1dr\? oM\ 1 oM\ 1
) = 1=)= —-(1-=)=. Al
(rdqﬁ) (R) R? (r)7‘2 (A.18)

A change of variable to u = R/r produces an easier equation to solve:

(§Z>2:1_u2—2f(1—u3). (A.19)

Copyright Taylor & Francis 2018.

380 Web Materials

Gravitational Lensing (cross section)

Source Star

Observer

Figure A.3. Three trajectories of light showing the bending arising from the sun’s mass.
Note that there are three images formed on the right. Actually, as indicated by the ellipse,
an observer would see a circle (an Einstein ring) obtained by rotating this figure along the x
axis.

1. Verify that an approximate solution to (A.19) is

GM
~ 44— A2
6~a5 (4.20)

2. Evaluate this expression to determine a numerical value for the angle of deflection
for light grazing the sun’s surface (hint: It’s small). Use parameters M = 2x 1023
grams, R =7 x 100 cm, and G/c? = 7.4 x 1072 ¢cm/gram.

3. Although the ODE (A.19) is nonlinear, that is not an obstacle for a numerical
solution. Solve (A.19) numerically and compare your result with the value from
the approximate analytic expression.

A.4 Gravitational Lensing

In a different approach to the deflection of a light due to a very massive star, [Moore(13)]
assumes a Schwarzschild spacetime to describe the curved space outside of a spheri-
cally symmetric gravitational source (star). In terms of the inverse variable u = 1/r,
the geodesic equation is now

d*u 9

1. Modify your ODE solver appropriate to this equation. Employ units such that
mass is measured in meters, GM=1477.1 m, and M = 28My (Mg is a solar
mass).

Copyright Taylor & Francis 2018.

A. General Relativity 381

Relativistic and Newton Potential

0.04 \
\
\
l\
0.02 4 \ Newtonian
—_
T+ 0.007
—
> .
.\\
—0.02 .
\‘ —~ =
—0.04 1
5 10 15 20 25 30 35 40

™

Figure A.4. Relativistic and Newtonian potential for £/M = 4.3. Different energies would
correspond to differing values of the ordinate. One of the dots corresponds to the energy for
a circular orbit.

2. Equation (A.21) is quite sensitive to the initial conditions. Assume that initially
the light is very distant: » = 10%, and u(¢ = 0) = du(¢)/d¢ = 1075.

3. Convert your solution for r(¢) into one for (x,y), and plot up the photon paths
for 0 < ¢ < m. Our plot is given in Figure A.3.

4. Employ the symmetry of this problem to rotate your solution about the z axis
and thus obtain a circle. This is what an observer sees when viewing a distance
light source lying behind a massive star that focuses the point source into a ring.

Our program LensGravity.py is given in Listing A.3.

A.5 Particle Orbits in GR Gravity

The classical solution of Newton’s laws for the gravitational potential is just fine for
most everything. However there are small corrections arising from relativity, and while
small, these corrections are actually critical to the accuracy of modern gps devices.
The usual approach is to determine an ODE with a GR correction to the familiar
1/r gravitational potential, and then solve the ODE approximately or numerically.
We follow [Hartle(03)] and [Moore(13)] who derive an effective potential appropriate

Copyright Taylor & Francis 2018.

382 Web Materials

to the empty space external to a spherically symmetric star. For the Schwarzschild
metric (A.3), they give the effective radial potential as
GM (? GM /2
Vilr)=—-——+ 55— , (A.22)

r 2r2 r3

where G is the gravitational constant, £ is the angular momentum per unit rest mass,
M is the mass of the star, and the middle term is the usual angular momentum barrier.
We see that (A.22) differs from the Newtonian potential by a —GM¢?/r3 term that
provides an strong attraction at very short distances, in addition to the usual —GM/r
attraction. We obtain a dimensionless, and simpler-to-compute, form of the potential
by change of variables:

G 5/2 GE’Q
VT(T,) _ St om T A (AQS)
T, :&7 6,: % (A24)

1. Plot V,.(') versus 7’ for ¢/ = 4.3 (FigureA.4).

2. Describe in words how the orbits within this potential change with energy. (Hint:
one of the dots in Figure A.4 corresponds to the energy for a circular orbit.)

3. At what values of 7’ does the effective potential have a maximum and a mini-
mum?

4. At what value of v’ does a circular orbit exist?
5. Determine the range of r' values that occur for ¢/ = 4.3.

6. Indicate the above range on your plot by a horizontal line, and describe the
orbits.

7. Describe the orbit for energies corresponding to the maximum in the potential.

A5.1 Orbit Computation

A fairly simple way to determine the orbits of massive particles in the effective poten-
tial (A.23) is based on energy conservation. It starts with the energy per unit mass
expressed as the sum of kinetic and potential terms: [Moore(13)]:

Lodr\20> GM 2 GMP
b (dr)z GM ¢ GMe (A.25)

T 2\dg/ T 22 B

Copyright Taylor & Francis 2018.

A. General Relativity 383

25 1
20 4

20

10 4
15

M
\

>‘10-

-5 0 5 10 15 20 25 —20 _10 10 20

0
X/M x/M

Figure A.5. Left: An orbit corresponding to an energy at the maximum of the potential.
Right: A rapidly precessing orbit.

where ¢ is the polar angle. We obtain an ODE for the orbit by differentiating both
sides of the equation with respect to ¢:

Pr GM P 3GMP

d¢2 2 r3 rd

: (A.26)

where a common dr/d¢ factor cancels out. The ODE is simplified by a change of
variables:

2.,/
% =—u + g% +3Gu'?, (A.27)
M /
/:— /:—. A2
= -t (A29)

As with Newtonian orbits, the energy of the system determines the orbit charac-
teristics. For a numerical solution we use the energy integral to determine the initial
conditions for the ODE. Specifically, the energy integral (A.25) can be solved for
du' /dg:

du’ 2F Gu'

- = — 2

d¢ 02 02

As you (should) have deduced qualitatively, the potential (A.23) produces quali-
tatively differing orbits depending upon the system’s energy and angular momentum.

The problems of this section ask you to use your ODE solver to explore numerically

—u? 4 2Gu’3 . (A.29)

Copyright Taylor & Francis 2018.

384 Web Materials

and graphically various orbits corresponding to differing initial conditions and ener-
gies. Our program RelOrbits.py is in Listing A.4 and runs in Spyder. Note that when
you produce your graphs you should introduce some signal into your figures so that
you can deduce in which direction the orbiting particle moves, something we have not
done it in Figure A.5. Alternatively, you can produce animations or a time series of
frames, in which case the direction of motion will be evident.

1. Set up your ODE solver appropriate for (A.29) using G =1. Hint:

°F _Gu

yll] =/ 75 +2 gf; — w2 + 263, (A.30)
2(—0.028) y[0] ,

o0l =\ =3 + 2y T 2O (A.31)

2. Choose an energy corresponding to the maximum of the effective potential com-
pute your version of Figure A.4, and an initial r value at which the potential is
a maximum. As you may have deduced, this should lead to an unstable orbit
such as on the left of Figure A.5.

3. See if you can find initial conditions that lead to a circular orbit. Is it stable?
4. Investigate the effect of gradually decreasing the angular momentum.

5. Choose an energy that corresponds to the minimum in the effective potential
and plot the orbits. Examine the sensitivity of these orbits to the choice of
initial conditions.

6. Determine an energy and initial conditions that produce a precessing perihelion,
such as seen on the right of Figure A.5. In this case the massive particle moves
between two turning points, as shown by the horizontal line in the potential well
in Figure A 4.

7. Examine the orbits that occur if a particle is bound by the inner strong attrac-
tion. Can such a particle start at infinity and be captured?

A.6 Riemann and Ricci Tensors

Figure A.6 shows two free particles moving along the infinitesimally close geodesics
2%(7) and x°(7). We consider ¢ as the reference particle with u# = dz*/dr its 4-
velocity. The two trajectories start off parallel at time 7 = 0 and are connected by
the vector n(7):

% = z¥ 4+ n%(7). (A.32)

Copyright Taylor & Francis 2018.

A. General Relativity 385

L X3 xP)

n(T T7=0

X

Figure A.6. Two free particles move along the infinitesimally close geodesics z°(7) and z°(7).
The particles start off parallel at time 7 = 0 and are connected by the vector n(7).

If the relative acceleration of the particles is zero, then the geodesics remain parallel

and so:

d’n B

dr?
This derivative acts on the basics vectors, which in turn requires knowledge of the
Christoffel symbols:

(d2n
dr?
The quantity in parenthesis is called the Riemann tensor:

R%,, = 8,10, —9,I%, + T2 7, — T2 I (A.33)

nvo oy pv vyt po*

) — (a(,r;j,, — 9,70, +T3.T7, —Te T)u"u”u”.

oy pv vyt po

A.6.1 Problems
The following three problems can all be solved with variations of the same code.
1. Use sympy to evaluate the Riemann tensor for the Schwarzchild metric.
2. Use sympy to extract the Ricci curvature tensor, defined as the contraction
Ry, = RS, (A.34)
(note the implicit sum over).

3. The Ricci scalar gives a single numerical measure of the curvature at each point
in spacetime. It is defined as the contraction:

R =R} =g¢""Ry,. (A.35)

If a spacetime is flat, then R = 0 and the initially parallel geodesics remain so
in time. If a spacetime is curved, then R # 0. Use sympy to extract the Ricci
scalar from Ricci curvature tensor.

386

Copyright Taylor & Francis 2018.

Web Materials

A.6.2 Help with Solution

1. Use the previously—developed code to create four matrices containing the Christof-
fel symbols, ng, ., Ffw, and Fij.

2. Define a 4-D array for the Riemann tensor R/O\éav with the indices corresponding
to a, p, v, and o. (There are four indices with each index having a range of 4.)

3. To deduce the Ricci curvature tensor Ry,, define a 2-D array with each index
having a range of 4.

4.

Extract the Ricci scalar. Our version of said program is called Ricci.py and can
be found in Listing A.5.

A.7 General Relativity Code Listings

-

Wormhole. py :

from sympy import x

L

)

x = (2xL—a) /(pixM)
r = rhotMx(x*atan(x) —log(l4+xx*x)/2)

Symbolic evaluation of wormhole derivative

x, M, rho, a, r, Ip= symbols(’L x M rho a r 1p’)

drdL = diff(r,L)

print (’drdL(raw) = ’, drdL)

drdL = simplify (drdL)

print (’ And finally! dr/dL (simplified)=’, drdL)
Listing A.1. WormHole.py evaluates symbolically a derivative needed in description of
wormbhole.

VisualWorm. ipynb Visualize wormhole with Vpython in mnotebook

from vpython import =

import numpy as np

import math

escene = canvas (width=400,height=400, range= 15)

a =1 #2a is height inner cylinder

ring (pos=vector (0,0,0) ,radius=1,axis=vector (0,1,0),color=color.yellow)

def f(x): # function to be integrated
M= 0.5 # black hole mass
a =1 # 2a: cylinders height
y = np.sqrt(l— (2*np.arctan(2*x(x — a)/(np.pi*M))/np.pi)*%2)

return y

def trapezoid (Func,A,B,N):

h=(B—-A)/(N)

step, A:initial , B:end

Copyright Taylor & Francis 2018.

A. General Relativity 387

sum = (Func(A)+Func(B))/2 # initialize , (first + last)/2

for i in range(l, N): # inside
sum 4= Func (A+ixh) #
return hxsum # sum times h
def radiuss(L): # radius as function of L
ro =1 # radius of cylinder (a/ro=1)
a =1 # 2a: hetght of inner cylinder
M= 0.5 # black hole (mass M/ro)=1

xx = (2%(L—a))/(np.pixM)

p = Mx(xx*np.arctan (xx))

q —0.5%xMs«math.log (1+xx**2)
r ro+ ptq

return r

for in range (1,12): # to plot 2 rings (at z ant —z)
0 #limits of integration

i

300 # trapezoid rule points

if 1>6: N = 600 # more points

i
A
B
N

z = trapezoid (f,A,B,N) # returns z
L = i+1
rr = radiuss (L) # radius

ring (pos=vector (0,z,0) ,radius=rr ,axis=vector (0,1,0),
color=color.yellow)

ring (pos=vector(0,—z,0) ,radius=rr ,axis=vector (0,1,0),
color=color.yellow)

Listing A.2. VisualWorm.ipynb A Vpython visualization of a wormhole from within
Jupyter notebook.

-

LensGravity.py Deflection of light by sun wi Matplotlib

import numpy as np

import matplotlib.pyplot as plt
y = np.zeros ((2),float); ph
yy = np.zeros ((181),float); xx
rx = np.zeros ((181),float); ry

np.zeros ((181) ,float)
np.zeros ((181) ,float)
np.zeros ((181),float)

Gsun = 4477.1 # Sum mass z G (m)
GM = 28.%Gsun # Sun mass
y[0] = 1.e—6; y[1] = le—6 # Initial condition for u=1/r
def f(t,y): # RHS, can modify
rhs = np.zeros ((2),float)
rhs [0] =y
rhs [1] = 3xGMx(y[0]**2)—y [0]

return rhs

def rk4Algor(t, h, N, y, f): # Do not modify
k1l = np.zeros(N); k2=np.zeros(N); k3=np.zeros(N); <«
k4=np.zeros (N) ;

k1l = hxf(t,y)

k2 = hxf(t+h/2.,y+kl1/2.)
k3 = hxf(t+h/2.,y+k2/2.)
k4 = hxf(t+h,y+k3)

y = y+(kl1+2%(k2+k3)+k4) /6.
return y

Copyright Taylor & Francis 2018.

388 Web Materials
f(0,y) # Initial conditions
dphi = np.pi/180. # 180 wvalues of angle phi
i =0
for phi in np.arange(0,np.pi+dphi,dphi):
ph[i] = phi
y = rk4Algor (phi,dphi,2,y,f) # Call rk4
xx[i] = np.cos(phi)/y[0]/1000000 # Scale for graph
yy[i] = np.sin(phi)/y[0]/1000000
i =i+l
m= (yy[180] — yy[165])/(xx[180] —xx[165]) # Slope of straight <«
line
b = yy[180] — m#xx[180] # Intercept of line
i =0
for phi in np.arange(0,np.pi+dphi,dphi):
ry[j] = mxx[j] + b # Eqn straight line
j=j+1
plt.figure (figsize=(12,6))
plt.plot (xx,yy) # Straight line light tajectroy
plt.plot (xx,—yy) # Symmetric for mnegative y
plt.plot (0,0,’ro?) # Mass at origin
plt.text (0.02,0.02, ’Sun’)
plt.plot (0.98,0,’bo”) # Source
plt.plot (0.98,1.91,’go?) # Position source seen by O

plt.plot (0.98,—1.91,%go’)
plt.text(1,0,’S observer’)
plt.text(—1.00, 0.20,’Source’)
plt.text(1.02, 1.91,"S’ observer")
plt.text(1.02,—2,"S’’ observer")

plt.plot ([0],[3.]) # Invisible point
plt.plot ([0],[—3.]) # Invisible point at —y
plt.plot (xx,ry) # Upper straight line
plt.plot (xx,—ry) # Lower stratight line

plt.xlabel (’x?)
plt.ylabel(’y?)
plt .show ()

Listing A.3. LensGravity.py solves for orbits of light around very massive star.

RelOrbits.py: Reltiv orbits in gravitational pot (needs rk4)

import matplotlib.pyplot as plt
import numpy as np

dh = 0.04; dt = dh; ell = 4.3; G=1.0; N=2

E = 0.040139

phi = np.zeros ((944) ,float)

rr = mnp.zeros ((944) ,float)

y = np.zeros ((2),float)

y[0] = 0.052

y[1] = np.sqrt(2«E/ell*%x2 + 2xGxy [0]/ ell*x2—Gxy [0]**2+2%Gxy [0]*%3)

def £(t,y):
rhs = np.zeros (2)
rhs [0] = y[1]
rhs [1] = —y[0]4+G/ell x%x2 +3xGxy [0]**2
return rhs

Copyright Taylor & Francis 2018.

A. General Relativity 389

£(0,y)
i =0
for fi in np.arange(0,5.8%np.pi,dt):
y = rk4(fi ,dt,N,y,f)
rr[i] = (1/y[0])*np.sin(fi) # Notice 1/r (=u)
phi[i] = (1/y[0])*np.cos(fi)
i = i+1
f1 = plt.figure ()
plt.axes().set_aspect(’equal’) # Aspect ratio equal
plt.plot (phi[:455],rr[:455])
plt.xlabel ("zr/M")
plt .show ()

Listing A.4. RelOrbits.py solves for orbits of a massive particle in a gravitational potential
with a GR correction.

-

Ricci.py: Riemann & Ricci tensors, Ricci scalar via sympy

from sympy import x
import numpy as np

t,r,th, fi, rg = symbols(’t r th fi rg’) # Schwarzchild metric
print("contravariant") # Upper indices

Inverse matrizc
gT = Matrix([[1/(-1 + rg/r), 0, 0, 0], [0, 1 — rg/r, O, O],
0, 0, r*x(—2), 0], [0, O, O, 1/(r**2%xsin(th)=*%x2)]])

4—Dim array for alpha, beta, mu, nu

Ri = [[[[[] for n in range(4)] for a in range(4)] for b in range(4)]
for ¢ in range(4)]

RT = [[[] for m in range(4)]for p in range(4)] # Ricci tensor

Christoffel symbols upper index t,r,theta and pht
Cht = Matrix ([[0, 0.5xrg/(r*(r—rg)), 0, 0],
[0.5xrg/(r*(r—1g)),0,0,0], [0, 0, 0, 0], [0, 0, 0, 0]])
Chr = Matrix ([[0.5*rg*(r—rg)/r*%x3,0,0,0], <
[0,-0.5xrg/(r*(r—1g)) ,0,0],
[0,0, —1.0%xr + 1.0xrg, O], [0,0,0, (—1.0%r + rg)*sin(th)=xx2]])
Chth = Matrix ([[0, 0, 0, 0], [0, 0, 1.0/r, 0], [0, 1.0/r, O, 0],
[0, 0, 0, —0.5%sin(2%th)]])
Chfi = Matrix ([[0,0,0,0], [0, O, O, 1.0/r], [0,0,0,1./tan(th)],
1./r, 1.0/tan(th), 0]])
a

for alpha in range(0,4): # Upper index

if alpha == 0: Chalp = Cht
elif alpha == 1: Chalp = Chr
elif alpha == 2: Chalp = Chth
else: Chalp = Chfi
for be in range(0,4): # Beta
for mu in range (0,4):

if mu == 0: der2 =t

elif mu == 1: der2 = r

elif mu = 2: der2 = th

elif mu == 3: der2 = fi

for nu in range(0,4):

if nu == 0: derl t # Derivative

elif nu == 1: derl r

Copyright Taylor & Francis 2018.

390 Web Materials

elif nu 2: derl th
elif nu 3: derl fi
al = diff(Chalp[be,nu],der2) # Christoffel symbol
a2 = diff (Chalp[be,mu],derl) # Symbol and derivative
sump = 0 # FEinstein conwvention
sumn = 0 # FEinstein convention
for gam in [t,r,th, fi]:
if gam == t:
Chgam = Cht
gama = 0
elif gam == r:
Chgam = Chr
gama = 1
elif gam == th:
Chgam = Chth
gama = 2
elif gam == fi:
Chgam = Chfi
gama = 3
sump = sump + Chalp [mu, gama]*Chgam[be,nu]
sumn = sumn + Chalp [nu, gama]*Chgam [be ,mu]
R = simplify (al—a2+4sump—sumn) # Riemann tensor
if R== 0: Rilalpha][be][mu][nu] = 0
else :
Ri[alpha][be][mu][nu] =R
print("Ri[" ,alpha,"1[",be,"]I[" ,mu,"]1[",nu,"]=", <
Ri[alpha][be][mu][nu])

print("\n")
print("Ricci Tensor\n")

for ro in range(0,4): # Find Ricci tensor
for de in range (0,4):
sum = 0
for alp in range (0,4): sum = sum+Ri[alp][ro][alp][de]
RT[ro][de] = simplify (sum)

print("RT[" ,ro,"1[",de,"]1" ,RT[ro][de]) # Ricci’s tensor
sumR = 0 # Ricci Scalar
for be in range(0,4):

for nu in range (0,4): sumR = sumR+gT [be,nu]+«RT[be][nu]
print(sumR)

RS = (sumR)

print("RS" ,RS) # Ricci Scalar R

Listing A.5. Ricci.py uses sympy to evaluate the Riemann tensor, the Ricci curvature tensor,
and the Ricci scalar for the Schwarzchild metric. .

Copyright Taylor & Francis 2018.

391

Copyright Taylor & Francis 2018.

Web Materials

Python Code Directory

Name Listing Description Name Listing Description
AdvecLax.py 4.5 Advection Eq Beam.py 4.9 Navier-Stokes
Bisection.py 2.6 Bisection Algor BoundCall.py 6.5 P Space Bound
Bugs.py 8.1 Logistic Map CatFriction.py 4.2 Catenary Waves
CavityFlow.py 4.11 Cavity Flow CentralValue.py 1.11 Central Value
CircPolarztn.py 5.11 Circular Polarized | CoulWF.py 6.16 Coulomb WF
CWT.py 2.4 Wavelet TF DecaySound.py 7.3 Spontan Decay
DFTcomplex.py 2.1 DTF DielectVis.py 5.10 FDTD Dielectric
DielectVis.py 5.10 FDTD Animate DLA.py 7.6 Aggregation
DWT.py 2.5 Discrete Wavelets EasyMatPlot.py 1.3 MatPlotLib e.g.
EasyVisualVP.py 1.1 VPthonl Plot Entangle.py 6.21 Entangled QM
EqHeat.py 7.1 Heat Eq EqHeatMov.py 7.2 Heat Eq Animate
EqStringMovMat.py 4.1 String Animated FDTD.py 5.9 FDTD
Fern3D.py 8.4 Fern Fractal FFTmod.py 2.3 FFT

Fit.py 2.8 Least Sq Fit ForcedOscillate.py 3.1 ODE eg
GaussPoints.py 1.17 Gauss Points GlauberState.py 6.19 Glauber States
GradesMatplot.py 1.4 MatPlotLib eg Hdensity.py 6.8 H Density
HOmovSlow.py 6.9 HO Packet Slow HOmov . py 6.10 HO Animate
HOanal.py 6.2 HO Analytic HOchargeMat.py 6.13 Charged HO
HOchargeMat .py 6.13 Charged HO HOnumeric.py 6.1 HO WF Numer
HOpacket.py 6.11 HO Packet Viz HOpacketMat .py 6.12 HO Packet Mat
Hyperfine.py 6.20 H Hyperfine ImagePlaneMat.py 5.5 Images Plane
ImagePlaneVP.py 5.6 Images Plane ImageSphereVP.py 5.7 Images Sphere
IntegGaussCall.py 1.16 Gauss Integrate IsingVP.py 7.9 Ising Model
LaplaceCyl.py 5.4 Lapace’s Eq LaplaceDisk.py 5.3 Laplace Eq Disk
LaplacelLine.py 5.2 Laplace’s Eq Line LaplaceTri.py 5.1 Laplace Triangle
LensGravity.py A3 Gravitational Lens | LorentzFieldVP.py 5.18 Lorentz TF Fields
MatPlot2figs.py 1.5 MatPlotLib eg NewtonCall.py 2.7 Newton Search
MD1D.py 7.10 1-D MD MD2D.py 7.11 2-D MD
MDpBC.py 7.12 Periodic BC MD Permute.py 7.8 State Counting
Plm.py 6.7 Legendre Polys PondMatPlot.py 1.7 Scatter Plot
PredatorPrey.py 8.2 Predator Prey ProjectileAir.py 3.4 Projectile ODE
ProteinFold.py 8.3 Protein Folding QMC.py 6.23 Path Integration
QuantumEigenCall.py 6.3 QM Eigenvalue QuantumNumerov.py 6.4 Numerov Mth
QuarterPlate.py 5.12 1/4 Wave Plate RelOrbits.py A4 Relatvist Orbits
Ricci.py A5 Ricci Tensor rk4Algor.py 1.14 rk4 Algorithm
rk4Call.py 1.12 Calls rk4 rk4Duffing.py 1.13 rk4 e.g.
SincFilter.py 2.2 Noise Filtering ScattSqWell.py 6.14 Sq Well Scatt
Scatter3dPlot.py 1.8 Scatter Plot Simple3Dplot.py 1.6 Surface Plot
SlidingBox.py 1.10 Animate Soliton.py 4.6 KdeV Soliton
SolitonAnimate.py 4.7 Soliton Movie SgBilliardCM.py 3.3 Square Billiards
SU3.py 6.22 SU(3) Quarks -

Copyright Taylor & Francis 2018.

B. Python Code Directory 393
Name Listing Description Name Listing Description
3GraphVP.py 1.2 VPython Plot 3QMdisks.py 6.17 3 QM Disks
TeleMat.py 5.13 Telegraph Eq TeleVis.py 5.14 Telegraph Viz
ThinFilm.py 5.15 Thin Film Torricelli.py 4.10 Torricelli Flow
TrapMethods.py 1.15 Trapezoid Integ TwoCharges.py 5.16 Lorentz TF Q’s
TwoFields.py 5.17 Lorentz Field TwoDsol.py 4.8 2-D Soliton
TwoForces.py 1.9 Animate e.g. TwoWells.py 6.18 T-Dep 2 Wells
UranusNeptune.py 3.5 Uranus Orbit VisualWorm.ipynb A.2 Worm Hole Viz
Walk.py 7.4 Random Walk Walk3D.py 7.5 3D Random Walk
Waves2D.py 4.4 2-D Waves Num | Waves2Danal.py 4.3 2-D Waves Anal
WormHole.py Al Worm Hole Derv

