
A

General Relativity

A.1 Chapter Overview
These general relativity (GR) problems have been added after requests from readers,
and extend the problems in special relativity in Chapter 5. These problems deal with
the visualization of wormholes, the deflection of starlight by the sun, the gravitational
lensing by highly massive stars, and the motion of a particle in a Newtonian potential
with a GR correction, and the computation of some GR quantities.

A.2 Visualizing Wormholes
During Christopher Nolan’s direction of the science fiction movie Interstellar, Kip
Thorne (now a Noble laureate) helped develop the visualizations of rocket flight based
on solutions of the equations of Einstein’s theory of general relativity. The key element
of the movie was that interstellar travel was possible in a single human lifetime if a
spaceship passed through a wormhole (an Einstein–Rosen bridge), a tunnel-like struc-
ture in spacetime that connects one location in spacetime to another, or possibly to
another universe [James et al. (15)]. Fig.(A.1) is the visualization of such a wormhole.

Although wormholes have never been observed, they may occur as quantum fluc-
tuations on the Planck scale,

√
G~/c3 ∼ 10−35 m. Furthermore, it just might be

possible to have some type of exotic matter with negative energy density at the throat
of the wormhole that would enlarge the wormhole to a macroscopic size that might
permit a rocket ship pass through it. However, if our 4-D universe resided in a higher-
dimensional space (bulk), such as the 5-D one imagined in Interstellar, then there
might not be the need for exotic matter to hold the wormhole open. In either case,
interstellar travel can be imagined to be possible. While all of this is unlikely (it is
called science fiction after all), it is not strictly forbidden.

Morris and Thorn [Morris, M. S., K. S. Thorne, Wormholes in spacetime and their use for inter-
stellar travel: A tool for teaching General Relativity, Am. J. Phys., 56, 395-412, (1988).] discuss the
fundamentals of space travel using wormholes as an exercise in general relativity. Your
problem is to reproduce some stills of the wormhole visualizations that were created

375

Copyright Taylor & Francis 2018.

376 Web Materials

Figure A.1. The Ellis wormhole connecting an upper and lower (flatter) spaces. Note that
this visualization has the wormhole’s 4-D bulk embedded within a 3-D space. The throat
diameter is 2ρ and the proper distance traveled in a radial direction is `.

for the movie. As an alternative, you can reproduce some of the (different) visualiza-
tions found in [T. A. Roman, The inflated wormhole: A MATHEMATICA animation, Comp. in Phys.,
480-487, (1994).]. You will not be asked to actually solve Einstein’s equations, although we
would encourage you to do so. Another extension would be the creation of videos that
visualize what travel through a wormhole would look like if recorded by a camera on
the space ship, or from outside the wormhole. Some such visualizations from the Inter-
stellar movie can be found on Youtube [https://www.youtube.com/watch?v=f3ptQ0CPMmU.].

The equations that Thorne used to create the visualizations were expressed in
geometrized units in which G = 1, c = 1, time is measured in length 1s = c ∗ 1 =
2.998× 108 m, mass is also measured in length units, 1 kg= G/c2× 1 kg, so that 1 kg
= 0.742× 10−27 m, in which case the Sun’s mass = 1.476 km. The wormhole consists
of a 4-D cylinder with length 2a whose cross sections are spheres of radius ρ. In order
to visualize the 4-D wormhole, it is embedded in a 3-D space so that the cross section
are circles of radius ρ. The ends of the cylinder connect to flat 3-D spaces.

Thorne uses the Ellis extension of a spherical polar coordinates metric:

ds2 = −dt2 + d`2 + r2(dθ2 + sin2 θdφ2). (A.1)

Here the radius coordinate r is a function of `, the physical distance (proper distance)

Copyright Taylor & Francis 2018.

A. General Relativity 377

traveled in a radial direction:
r(`) =

√
ρ2 + `2, (A.2)

where ρ is the radius of the throat in a cylindrical-shaped wormhole. Note that the
time coordinate t enters the metric (A.1) with a negative sign. This means that for
fixed `, θ, and φ, t increases in the timelike direction. Accordingly, t is the proper
time as measured by a person at rest in the spatial (`, θ, φ) coordinate system.

Because r2(dθ2 +sin2 θdφ2) is the familiar metric describing the surface of a sphere
of radius r, the wormhole is spherically symmetric. This means that when l → +∞,
as well as when l → −∞, the radius of the sphere within the wormhole approaches
proper distance `. This also means that as l → ±∞ we would have two separate
flat spaces connected by the wormhole. The transition between the two flat spaces
via the wormhole’s throat is made to resemble the transition to an external space in
which a nonspinning black hole resides. This is described by the Schwarzschild or hole
metric [James et al. (15)]:

ds2 = −(1− 2M/r)dr2 + dr2

1− 2M/r
+ r2 (dθ2 + sin2 θ dφ2), (A.3)

whereM is the black hole’s mass. With this metric, the radius r becomes the outward
coordinate rather than the proper distance `. The visualizations in the movie required
a solution for r(`), that is, a solution or an expression for the outward coordinate as a
function of proper distance. To reduce the effort involved, the visualizations used an
analytic expression for r(`) outside the wormhole’s cylindrical interior that is similar
to the Schwarzschild r(`):

r(|`| > a) = ρ+ 2
π

∫ |`|−a
0

arctan
(2ξ
πM

)
dξ (A.4)

= ρ+M
[
x arctan x− 1

2 ln(1 + x2)
]
, x = 2 |`| − a

πM
. (A.5)

For cylindrical coordinates, the z coordinate is the embedding space height above
the wormhole’s midplane, and so the embedding space metric becomes

ds2 = dz2 + dr2 + r2 dφ2. (A.6)

In this case, the spatial metric of the wormhole’s two-dimensional equatorial surface
becomes:

ds2 = d`2 + r2(`) dφ2. (A.7)
Combining these equations lets us solve for z(`):

dz2 + dr2 = d`2, (A.8)

z(`) =
∫ `

0

√
1− (dr/dL)2 dL. (A.9)

Copyright Taylor & Francis 2018.

378 Web Materials

You obtain the equations needed to program up the visualization of a wormhole by
substituting (A.4) and (A.5) into (A.9).

1. In order to apply (A.9) we need to evaluate the derivative dr/d`. Use Python’s
symbolic algebra package sympy to show that

dr

d`
= 2
π

tan−1
(

2`− a
πM

)
. (A.10)

Our program WormHole.py in Listing A.1 evaluates this derivative.

2. Insert this dr/d` into (A.9) and evaluate the z(l) integral numerically for

ρ = 1, a = 1, M = 0.5. (A.11)

3. The contour lines or rings shown in Fig. A.1 correspond to different values of `.
They were obtained by using Vpython in a Jupyter notebook with the program
VisualWorm.ipynb given in Listing A.21.

4. Make your own plot of the wormhole for ` = 1, · · · , 11.

5. Create a cylindrical wormhole of length 2L with a spherical cross sections of
radius ρ. Visualize the wormhole with a 3-D embedding diagram in which the
missing dimension results in the cross sections appearing as circles rather than
spheres. Follow the same steps as used for the Ellis wormhole, (A.1), but now
with

r(`) =
{
ρ, |`| ≤ L (Wormhole interior),
|`| − L+ ρ, |`| ≥ L (Wormhole exterior)

(A.12)

A.3 Gravitational Deflection of Light
A geodesic is the shortest path between two points on a curved surface. General
relativity assumes that light travels on geodesics, which are curved paths in a 4-D
spacetime. To determine a geodesic, one starts with the infinitesimal 4-D path length
(interval)

ds2 = c2dt2 − dx2 − dy2 − dz2. (A.13)

Since light travel a distance ct in time t, the interval vanishes for light, and its path is
therefore called a null geodesic. Since material particles move slower than light, their
interval is positive (time-like). The path that light takes in spacetime is the solution
of the geodesic equation

d2xβ

dλ2 + Γβµν
dxµ

dλ

dxν

dλ
= 0. (A.14)

1While the previous version of Vpython explicitly called the Visual package and was run via an
editor, we have been able to run the latest Vpython only within a Jupyter notebook.

Copyright Taylor & Francis 2018.

A. General Relativity 379

Here Γβµν is the Christoffel symbol and would be obtained by solving the curvature
equation Rµν = 0 for a given metric tensor gµν . The curvature equation turns out to
be a rather formidable set of ten nonlinear PDE’s, which we are happy to leave for
another time.

R

Figure A.2. A light ray being bent by an angle φ due to the gravitational effect of the sun.

One of the early tests of general relativity was its prediction of the angle of de-
flection φ for light starting at an impact parameter b = R and just grazing the sun
(Figure A.2). At first Newtonian mechanics solved this problem by calculating the
orbit of a massive particle around the sun, and then taking the m → 0 limit for the
particle to obtain

φ = 2GM
Rc2

. (A.15)

Here G is the gravitational constant, M is the mass of the sun, and R is the radius
of the sun. Later, Einsteinian mechanics was used to solve (A.14) approximately and
obtained twice as large a value,

φ = 4GM
Rc2

, (A.16)

which agreed with the measurements.
Now let’s try to calculate some numerical values for the deflection. In 1916

Schwarzschild found an exact solution of the Einsteinian equations using Schwarzschild
metric [Moore(13)],

ds2 =
(

1− 2GM
c2r

)
c2dt2 −

(
1− 2GM

c2r

)−1
dr2 − r2(dθ2 + sin2 θdφ2). (A.17)

For this metric and for light just grazing the sun (b = R), the orbit equation takes the
simple form (

1
r

dr

dφ

)2
=
(

1− 2M
R

)
1
R2 −

(
1− 2M

r

)
1
r2 . (A.18)

A change of variable to u = R/r produces an easier equation to solve:(
du

dφ

)2
= 1− u2 − 2M

R
(1− u3). (A.19)

Copyright Taylor & Francis 2018.

380 Web Materials

Figure A.3. Three trajectories of light showing the bending arising from the sun’s mass.
Note that there are three images formed on the right. Actually, as indicated by the ellipse,
an observer would see a circle (an Einstein ring) obtained by rotating this figure along the x
axis.

1. Verify that an approximate solution to (A.19) is

φ ' 4GM
Rc2

. (A.20)

2. Evaluate this expression to determine a numerical value for the angle of deflection
for light grazing the sun’s surface (hint: It’s small). Use parametersM = 2×1023

grams, R = 7× 1010 cm, and G/c2 = 7.4× 10−29 cm/gram.

3. Although the ODE (A.19) is nonlinear, that is not an obstacle for a numerical
solution. Solve (A.19) numerically and compare your result with the value from
the approximate analytic expression.

A.4 Gravitational Lensing
In a different approach to the deflection of a light due to a very massive star, [Moore(13)]
assumes a Schwarzschild spacetime to describe the curved space outside of a spheri-
cally symmetric gravitational source (star). In terms of the inverse variable u = 1/r,
the geodesic equation is now

d2u

dφ2 = 3GM u2 − u. (A.21)

1. Modify your ODE solver appropriate to this equation. Employ units such that
mass is measured in meters, GM=1477.1 m, and M = 28M� (M� is a solar
mass).

Copyright Taylor & Francis 2018.

A. General Relativity 381

V
 (

r'
)

r

Figure A.4. Relativistic and Newtonian potential for `/M = 4.3. Different energies would
correspond to differing values of the ordinate. One of the dots corresponds to the energy for
a circular orbit.

2. Equation (A.21) is quite sensitive to the initial conditions. Assume that initially
the light is very distant: r = 106, and u(φ = 0) = du(φ)/dφ = 10−6.

3. Convert your solution for r(φ) into one for (x, y), and plot up the photon paths
for 0 ≤ φ ≤ π. Our plot is given in Figure A.3.

4. Employ the symmetry of this problem to rotate your solution about the x axis
and thus obtain a circle. This is what an observer sees when viewing a distance
light source lying behind a massive star that focuses the point source into a ring.

Our program LensGravity.py is given in Listing A.3.

A.5 Particle Orbits in GR Gravity
The classical solution of Newton’s laws for the gravitational potential is just fine for
most everything. However there are small corrections arising from relativity, and while
small, these corrections are actually critical to the accuracy of modern gps devices.
The usual approach is to determine an ODE with a GR correction to the familiar
1/r gravitational potential, and then solve the ODE approximately or numerically.
We follow [Hartle(03)] and [Moore(13)] who derive an effective potential appropriate

Copyright Taylor & Francis 2018.

382 Web Materials

to the empty space external to a spherically symmetric star. For the Schwarzschild
metric (A.3), they give the effective radial potential as

Vr(r) = −GM
r

+ `2

2r2 −
GM`2

r3 , (A.22)

where G is the gravitational constant, ` is the angular momentum per unit rest mass,
M is the mass of the star, and the middle term is the usual angular momentum barrier.
We see that (A.22) differs from the Newtonian potential by a −GM`2/r3 term that
provides an strong attraction at very short distances, in addition to the usual −GM/r
attraction. We obtain a dimensionless, and simpler-to-compute, form of the potential
by change of variables:

Vr(r′) =− G

r′
+ `′2

2r′2 −
G`′2

r′3
, (A.23)

r′ = r

M
, `′ = `

M
. (A.24)

1. Plot Vr(r′) versus r′ for `′ = 4.3 (FigureA.4).

2. Describe in words how the orbits within this potential change with energy. (Hint:
one of the dots in Figure A.4 corresponds to the energy for a circular orbit.)

3. At what values of r′ does the effective potential have a maximum and a mini-
mum?

4. At what value of r′ does a circular orbit exist?

5. Determine the range of r′ values that occur for `′ = 4.3.

6. Indicate the above range on your plot by a horizontal line, and describe the
orbits.

7. Describe the orbit for energies corresponding to the maximum in the potential.

A.5.1 Orbit Computation
A fairly simple way to determine the orbits of massive particles in the effective poten-
tial (A.23) is based on energy conservation. It starts with the energy per unit mass
expressed as the sum of kinetic and potential terms: [Moore(13)]:

E = 1
2

(dr
dφ

)2 `2

r4 −
GM

r
+ `2

2r2 −
GM`2

r3 , (A.25)

Copyright Taylor & Francis 2018.

A. General Relativity 383

Figure A.5. Left: An orbit corresponding to an energy at the maximum of the potential.
Right: A rapidly precessing orbit.

where φ is the polar angle. We obtain an ODE for the orbit by differentiating both
sides of the equation with respect to φ:

d2r

dφ2 = −GM
r2 + `2

r3 −
3GM`2

r4 , (A.26)

where a common dr/dφ factor cancels out. The ODE is simplified by a change of
variables:

d2u′

dφ2 = −u′ + G

`′2
+ 3Gu′2, (A.27)

u′ = M

r
, `′ = `

M
. (A.28)

As with Newtonian orbits, the energy of the system determines the orbit charac-
teristics. For a numerical solution we use the energy integral to determine the initial
conditions for the ODE. Specifically, the energy integral (A.25) can be solved for
du′/dφ:

du′

dφ
=
√

2E
`′2

+ 2Gu
′

`′2
− u′2 + 2Gu′3 . (A.29)

As you (should) have deduced qualitatively, the potential (A.23) produces quali-
tatively differing orbits depending upon the system’s energy and angular momentum.
The problems of this section ask you to use your ODE solver to explore numerically

Copyright Taylor & Francis 2018.

384 Web Materials

and graphically various orbits corresponding to differing initial conditions and ener-
gies. Our program RelOrbits.py is in Listing A.4 and runs in Spyder. Note that when
you produce your graphs you should introduce some signal into your figures so that
you can deduce in which direction the orbiting particle moves, something we have not
done it in Figure A.5. Alternatively, you can produce animations or a time series of
frames, in which case the direction of motion will be evident.

1. Set up your ODE solver appropriate for (A.29) using G =1. Hint:

y[1] =
√

2E
`′2

+ 2Gu
′

`′2
− u′2 + 2Gu′3, (A.30)

y[0] =

√
2(−0.028)

4.32 + 2 y[0]
4.32 − y[0]2 + 2y[0]3. (A.31)

2. Choose an energy corresponding to the maximum of the effective potential com-
pute your version of Figure A.4, and an initial r value at which the potential is
a maximum. As you may have deduced, this should lead to an unstable orbit
such as on the left of Figure A.5.

3. See if you can find initial conditions that lead to a circular orbit. Is it stable?

4. Investigate the effect of gradually decreasing the angular momentum.

5. Choose an energy that corresponds to the minimum in the effective potential
and plot the orbits. Examine the sensitivity of these orbits to the choice of
initial conditions.

6. Determine an energy and initial conditions that produce a precessing perihelion,
such as seen on the right of Figure A.5. In this case the massive particle moves
between two turning points, as shown by the horizontal line in the potential well
in Figure A.4.

7. Examine the orbits that occur if a particle is bound by the inner strong attrac-
tion. Can such a particle start at infinity and be captured?

A.6 Riemann and Ricci Tensors
Figure A.6 shows two free particles moving along the infinitesimally close geodesics
xa(τ) and xb(τ). We consider xa as the reference particle with uµ ≡ dxµ/dτ its 4-
velocity. The two trajectories start off parallel at time τ = 0 and are connected by
the vector n(τ):

xa = xb + nα(τ). (A.32)

Copyright Taylor & Francis 2018.

A. General Relativity 385

t

x

n()

x xa b() ()

=0

Figure A.6. Two free particles move along the infinitesimally close geodesics xa(τ) and xb(τ).
The particles start off parallel at time τ = 0 and are connected by the vector n(τ).

If the relative acceleration of the particles is zero, then the geodesics remain parallel
and so:

d2n

dτ2 = 0.

This derivative acts on the basics vectors, which in turn requires knowledge of the
Christoffel symbols:(d2n

dτ2

)α
=
(
∂σΓαµν − ∂νΓαµσ + ΓασγΓγµν − ΓανγΓγµσ

)
uσuµuν .

The quantity in parenthesis is called the Riemann tensor :

Rαµνσ = ∂σΓαµν − ∂νΓαµσ + ΓασγΓγµν − ΓανγΓγµσ. (A.33)

A.6.1 Problems
The following three problems can all be solved with variations of the same code.

1. Use sympy to evaluate the Riemann tensor for the Schwarzchild metric.

2. Use sympy to extract the Ricci curvature tensor, defined as the contraction

Rλµ ≡ Rαλαγ (A.34)

(note the implicit sum over α).

3. The Ricci scalar gives a single numerical measure of the curvature at each point
in spacetime. It is defined as the contraction:

R ≡ Rλλ = gλγRλγ . (A.35)

If a spacetime is flat, then R = 0 and the initially parallel geodesics remain so
in time. If a spacetime is curved, then R 6= 0. Use sympy to extract the Ricci
scalar from Ricci curvature tensor.

Copyright Taylor & Francis 2018.

386 Web Materials

A.6.2 Help with Solution
1. Use the previously–developed code to create four matrices containing the Christof-

fel symbols, Γ0
µν , Γrµν , Γθµν , and Γφµν .

2. Define a 4-D array for the Riemann tensor Rαλαγ with the indices corresponding
to α, µ, ν, and σ. (There are four indices with each index having a range of 4.)

3. To deduce the Ricci curvature tensor Rλµ, define a 2-D array with each index
having a range of 4.

4. Extract the Ricci scalar. Our version of said program is called Ricci.py and can
be found in Listing A.5.

A.7 General Relativity Code Listings

� �
Wormhole . py : Symbolic eva luat ion of wormhole de r i v a t i v e

from sympy import ∗
L , x , M, rho , a , r , lp= symbols (’L x M rho a r lp ’)
x = (2∗L−a) /(p i ∗M)
r = rho+M∗(x∗atan (x) −l o g (1+x∗x) /2)
drdL = d i f f (r , L)
pr in t (’ drdL (raw) = ’ , drdL)
drdL = s i m p l i f y (drdL)
pr in t (’ And finally ! dr / dL (simplified) = ’ , drdL)�

Listing A.1. WormHole.py evaluates symbolically a derivative needed in description of
wormhole.

� �
VisualWorm . ipynb Visua l i z e wormhole with Vpython in notebook

from vpython import ∗
import numpy as np
import math

e sc e ne = canvas (width =400 , h e i g h t =400 , range= 15)
a = 1 #2a i s he igh t inner cy l inder
r i n g (pos=v e c t o r (0 , 0 , 0) , r a d i u s =1, a x i s=v e c t o r (0 , 1 , 0) , c o l o r=c o l o r . ye l low)

def f (x) : # funct ion to be in tegra ted
M = 0 . 5 # black hole mass
a = 1 # 2a : cy l inder s he igh t
y = np . s q r t (1− (2∗np . arctan (2∗ (x − a) /(np . p i ∗M)) /np . p i) ∗∗2)
return y

def t r a p e z o i d (Func ,A, B,N) :
h = (B − A) /(N) # step , A: i n i t i a l , B: end

Copyright Taylor & Francis 2018.

A. General Relativity 387

sum = (Func (A)+Func (B)) /2 # in i t i a l i z e , (f i r s t + l a s t)/2
for i in range (1 , N) : # ins ide

sum += Func (A+i ∗h) #
return h∗sum # sum times h

def r a d i u s s (L) : # radius as funct ion of L
ro = 1 # radius of cy l inder (a/ro=1)
a = 1 # 2a : he igh t of inner cy l inder
M = 0 . 5 # black hole (mass M/ro)=1
xx = (2∗ (L−a)) /(np . p i ∗M)
p = M∗(xx∗np . arctan (xx))
q = −0.5∗M∗math . l o g (1+xx∗∗2)
r = ro+ p+q
return r

for i in range (1 , 1 2) : # to p l o t 2 r ings (at z ant −z)
A = 0 #l im i t s of in t eg ra t i on
B = i
N = 300 # trapezo id ru l e points
i f i >6: N = 600 # more points
z = t r a p e z o i d (f ,A, B,N) # returns z
L = i +1
r r = r a d i u s s (L) # radius
r i n g (pos=v e c t o r (0 , z , 0) , r a d i u s=rr , a x i s=v e c t o r (0 , 1 , 0) ,

c o l o r=c o l o r . ye l low)
r i n g (pos=v e c t o r (0 ,−z , 0) , r a d i u s=rr , a x i s=v e c t o r (0 , 1 , 0) ,

c o l o r=c o l o r . ye l low)�
Listing A.2. VisualWorm.ipynb A Vpython visualization of a wormhole from within
Jupyter notebook.

� �
LensGravity . py Def l ec t ion of l i g h t by sun wi Matp lo t l i b

import numpy as np
import m a t p l o t l i b . pyplot as p l t
y = np . z e r o s ((2) , f l o a t) ; ph = np . z e r o s ((1 8 1) , f l o a t)
yy = np . z e r o s ((1 8 1) , f l o a t) ; xx = np . z e r o s ((1 8 1) , f l o a t)
rx = np . z e r o s ((1 8 1) , f l o a t) ; ry = np . z e r o s ((1 8 1) , f l o a t)
Gsun = 4477.1 # Sum mass x G (m)
GM = 28.∗Gsun # Sun mass
y [0] = 1 . e−6; y [1] = 1e−6 # In i t i a l condi t ion for u=1/r

def f (t , y) : # RHS, can modify
rhs = np . z e r o s ((2) , f l o a t)
rhs [0] = y [1]
rhs [1] = 3∗GM∗(y [0]∗∗ 2)−y [0]
return rhs

def rk4Algor (t , h , N, y , f) : # Do not modify
k1 = np . z e r o s (N) ; k2=np . z e r o s (N) ; k3=np . z e r o s (N) ; ←↩

k4=np . z e r o s (N) ;
k1 = h∗ f (t , y)
k2 = h∗ f (t+h / 2 . , y+k1 / 2 .)
k3 = h∗ f (t+h / 2 . , y+k2 / 2 .)
k4 = h∗ f (t+h , y+k3)
y = y+(k1+2∗(k2+k3)+k4) / 6 .
return y

Copyright Taylor & Francis 2018.

388 Web Materials

f (0 , y) # In i t i a l condi t ions
dphi = np . p i /180 . # 180 va lues of angle phi
i = 0
for phi in np . arange (0 , np . p i+dphi , dphi) :

ph [i] = phi
y = rk4Algor (phi , dphi , 2 , y , f) # Cal l rk4
xx [i] = np . cos (phi) /y [0] / 1 0 0 0 0 0 0 # Scale for graph
yy [i] = np . s i n (phi) /y [0] / 1 0 0 0 0 0 0
i = i +1

m = (yy [1 8 0] − yy [1 6 5]) /(xx [180]−xx [1 6 5]) # Slope of s t r a i g h t ←↩
l i n e

b = yy [1 8 0] − m∗xx [1 8 0] # Intercep t of l i n e
j = 0

for phi in np . arange (0 , np . p i+dphi , dphi) :
ry [j] = m∗xx [j] + b # Eqn s t r a i g h t l i n e
j=j+1

p l t . f i g u r e (f i g s i z e =(12 ,6))
p l t . p l o t (xx , yy) # Stra i gh t l i n e l i g h t t a j e c t roy
p l t . p l o t (xx,−yy) # Symmetric for negat ive y
p l t . p l o t (0 , 0 , ’ ro ’) # Mass at or i g in
p l t . t e x t (0 . 0 2 , 0 . 0 2 , ’ Sun ’)
p l t . p l o t (0 . 9 8 , 0 , ’ bo ’) # Source
p l t . p l o t (0 . 9 8 , 1 . 9 1 , ’ go ’) # Posit ion source seen by O
p l t . p l o t (0 .98 , −1 .91 , ’ go ’)
p l t . t e x t (1 , 0 , ’S observer ’)
p l t . t e x t (−1.00 , 0 . 2 0 , ’ Source ’)
p l t . t e x t (1 . 0 2 , 1 . 9 1 , " S ’ observer ")
p l t . t e x t (1.02 ,−2 , " S ’’ observer ")
p l t . p l o t ([0] , [3 .]) # In v i s i b l e point
p l t . p l o t ([0] , [− 3 .]) # In v i s i b l e point at −y
p l t . p l o t (xx , ry) # Upper s t r a i g h t l i n e
p l t . p l o t (xx,− ry) # Lower s t r a i g h t l i n e
p l t . x l a b e l (’x ’)
p l t . y l a b e l (’y ’)
p l t . show ()�

Listing A.3. LensGravity.py solves for orbits of light around very massive star.

� �
RelOrbits . py : Re l t i v o r b i t s in g r a v i t a t i ona l pot (needs rk4)

import m a t p l o t l i b . pyplot as p l t
import numpy as np

dh = 0 . 0 4 ; dt = dh ; e l l = 4 . 3 ; G = 1 . 0 ; N = 2
E = 0.040139
phi = np . z e r o s ((9 4 4) , f l o a t)
r r = np . z e r o s ((9 4 4) , f l o a t)
y = np . z e r o s ((2) , f l o a t)
y [0] = 0.052
y [1] = np . s q r t (2∗E/ e l l ∗∗2 + 2∗G∗y [0] / e l l ∗∗2−G∗y [0]∗∗2+2∗G∗y [0]∗∗ 3)

def f (t , y) :
rhs = np . z e r o s (2)
rhs [0] = y [1]
rhs [1] = −y [0]+G/ e l l ∗∗2 +3∗G∗y [0]∗∗2
return rhs

Copyright Taylor & Francis 2018.

A. General Relativity 389

f (0 , y)
i = 0
for f i in np . arange (0 , 5 . 8∗ np . pi , dt) :

y = rk4 (f i , dt ,N, y , f)
r r [i] = (1/ y [0]) ∗np . s i n (f i) # Notice 1/r (=u)
phi [i] = (1/ y [0]) ∗np . cos (f i)
i = i +1

f 1 = p l t . f i g u r e ()
p l t . axes () . set_aspect (’ equal ’) # Aspect ra t i o equal
p l t . p l o t (phi [: 4 5 5] , r r [: 4 5 5])
p l t . x l a b e l (" r / M ")
p l t . show ()�

Listing A.4. RelOrbits.py solves for orbits of a massive particle in a gravitational potential
with a GR correction.

� �
Ricci . py : Riemann & Ricci tensors , Ricci sca lar via sympy

from sympy import ∗
import numpy as np

t , r , th , f i , rg = symbols (’t r th fi rg ’) # Schwarzchi ld metric
pr in t (" c o n t r a v a r i a n t ") # Upper ind ices

Inverse matrix
gT = Matrix ([[1/(−1 + rg / r) , 0 , 0 , 0] , [0 , 1 − rg /r , 0 , 0] ,

[0 , 0 , r ∗∗(−2) , 0] , [0 , 0 , 0 , 1/(r ∗∗2∗ s i n (th) ∗∗2)]])

4−Dim array for alpha , beta , mu, nu
Ri = [[[[[] for n in range (4)] for a in range (4)] for b in range (4)]

for c in range (4)]
RT = [[[] for m in range (4)] for p in range (4)] # Ricci tensor

Chr i s t o f f e l symbols upper index t , r , the ta and phi
Cht = Matrix ([[0 , 0 .5∗ rg /(r ∗(r−rg)) , 0 , 0] ,

[0 . 5∗ rg /(r ∗(r−rg)) , 0 , 0 , 0] , [0 , 0 , 0 , 0] , [0 , 0 , 0 , 0]])
Chr = Matrix ([[0 . 5 ∗ rg ∗(r−rg) / r ∗∗3 , 0 , 0 , 0] , ←↩

[0 ,−0.5∗ rg /(r ∗(r−rg)) , 0 , 0] ,
[0 , 0 , −1.0∗ r + 1.0∗ rg , 0] , [0 , 0 , 0 , (−1.0∗ r + rg)∗ s i n (th) ∗ ∗ 2]])

Chth = Matrix ([[0 , 0 , 0 , 0] , [0 , 0 , 1 .0 / r , 0] , [0 , 1 .0 / r , 0 , 0] ,
[0 , 0 , 0 , −0.5∗ s i n (2∗ th)]])

Chf i = Matrix ([[0 , 0 , 0 , 0] , [0 , 0 , 0 , 1 .0 / r] , [0 , 0 , 0 , 1 . / tan (th)] ,
[0 , 1 . / r , 1 . 0/ tan (th) , 0]])

for alpha in range (0 , 4) : # Upper index
i f alpha == 0 : Chalp = Cht
e l i f alpha == 1 : Chalp = Chr
e l i f alpha == 2 : Chalp = Chth
e l s e : Chalp = Chfi
for be in range (0 , 4) : # Beta
for mu in range (0 , 4) :

i f mu == 0 : der2 = t
e l i f mu == 1 : der2 = r
e l i f mu == 2 : der2 = th
e l i f mu == 3 : der2 = f i
for nu in range (0 , 4) :

i f nu == 0 : der1 = t # Derivat ive
e l i f nu == 1 : der1 = r

Copyright Taylor & Francis 2018.

390 Web Materials

e l i f nu == 2 : der1 = th
e l i f nu == 3 : der1 = f i
a1 = d i f f (Chalp [be , nu] , der2) # Chr i s t o f f e l symbol
a2 = d i f f (Chalp [be ,mu] , der1) # Symbol and de r i va t i v e
sump = 0 # Einstein convention
sumn = 0 # Einstein convention
for gam in [t , r , th , f i] :

i f gam == t :
Chgam = Cht
gama = 0

e l i f gam == r :
Chgam = Chr
gama = 1

e l i f gam == th :
Chgam = Chth
gama = 2

e l i f gam == f i :
Chgam = Chfi
gama = 3

sump = sump + Chalp [mu, gama]∗Chgam [be , nu]
sumn = sumn + Chalp [nu , gama]∗Chgam [be ,mu]

R = s i m p l i f y (a1−a2+sump−sumn) # Riemann tensor
i f R == 0 : Ri [alpha] [be] [mu] [nu] = 0
e l s e :

Ri [alpha] [be] [mu] [nu] = R
pr in t (" Ri [" , alpha , "][" , be , "][" ,mu, "][" , nu , "]= " , ←↩

Ri [alpha] [be] [mu] [nu])
pr in t (" \ n ")
pr in t (" Ricci Tensor \ n ")
for ro in range (0 , 4) : # Find Ricci tensor

for de in range (0 , 4) :
sum = 0
for alp in range (0 , 4) : sum = sum+Ri [a lp] [ro] [a lp] [de]
RT[ro] [de] = s i m p l i f y (sum)
pr in t (" RT [" , ro , "][" , de , "] " ,RT[ro] [de]) # Ricci ’ s tensor

sumR = 0 # Ricci Scalar
for be in range (0 , 4) :

for nu in range (0 , 4) : sumR = sumR+gT [be , nu]∗RT[be] [nu]
pr in t (sumR)

RS = (sumR)
pr in t (" RS " ,RS) # Ricci Scalar R�

Listing A.5. Ricci.py uses sympy to evaluate the Riemann tensor, the Ricci curvature tensor,
and the Ricci scalar for the Schwarzchild metric. .

Copyright Taylor & Francis 2018.

391

Copyright Taylor & Francis 2018.

392 Web MaterialsB

Python Code Directory

Name Listing Description Name Listing Description
AdvecLax.py 4.5 Advection Eq Beam.py 4.9 Navier-Stokes
Bisection.py 2.6 Bisection Algor BoundCall.py 6.5 P Space Bound
Bugs.py 8.1 Logistic Map CatFriction.py 4.2 Catenary Waves
CavityFlow.py 4.11 Cavity Flow CentralValue.py 1.11 Central Value
CircPolarztn.py 5.11 Circular Polarized CoulWF.py 6.16 Coulomb WF
CWT.py 2.4 Wavelet TF DecaySound.py 7.3 Spontan Decay
DFTcomplex.py 2.1 DTF DielectVis.py 5.10 FDTD Dielectric
DielectVis.py 5.10 FDTD Animate DLA.py 7.6 Aggregation
DWT.py 2.5 Discrete Wavelets EasyMatPlot.py 1.3 MatPlotLib e.g.
EasyVisualVP.py 1.1 VPthonl Plot Entangle.py 6.21 Entangled QM
EqHeat.py 7.1 Heat Eq EqHeatMov.py 7.2 Heat Eq Animate
EqStringMovMat.py 4.1 String Animated FDTD.py 5.9 FDTD
Fern3D.py 8.4 Fern Fractal FFTmod.py 2.3 FFT
Fit.py 2.8 Least Sq Fit ForcedOscillate.py 3.1 ODE eg
GaussPoints.py 1.17 Gauss Points GlauberState.py 6.19 Glauber States
GradesMatplot.py 1.4 MatPlotLib eg Hdensity.py 6.8 H Density
HOmovSlow.py 6.9 HO Packet Slow HOmov.py 6.10 HO Animate
HOanal.py 6.2 HO Analytic HOchargeMat.py 6.13 Charged HO
HOchargeMat.py 6.13 Charged HO HOnumeric.py 6.1 HO WF Numer
HOpacket.py 6.11 HO Packet Viz HOpacketMat.py 6.12 HO Packet Mat
Hyperfine.py 6.20 H Hyperfine ImagePlaneMat.py 5.5 Images Plane
ImagePlaneVP.py 5.6 Images Plane ImageSphereVP.py 5.7 Images Sphere
IntegGaussCall.py 1.16 Gauss Integrate IsingVP.py 7.9 Ising Model
LaplaceCyl.py 5.4 Lapace’s Eq LaplaceDisk.py 5.3 Laplace Eq Disk
LaplaceLine.py 5.2 Laplace’s Eq Line LaplaceTri.py 5.1 Laplace Triangle
LensGravity.py A.3 Gravitational Lens LorentzFieldVP.py 5.18 Lorentz TF Fields
MatPlot2figs.py 1.5 MatPlotLib eg NewtonCall.py 2.7 Newton Search
MD1D.py 7.10 1-D MD MD2D.py 7.11 2-D MD
MDpBC.py 7.12 Periodic BC MD Permute.py 7.8 State Counting
Plm.py 6.7 Legendre Polys PondMatPlot.py 1.7 Scatter Plot
PredatorPrey.py 8.2 Predator Prey ProjectileAir.py 3.4 Projectile ODE
ProteinFold.py 8.3 Protein Folding QMC.py 6.23 Path Integration
QuantumEigenCall.py 6.3 QM Eigenvalue QuantumNumerov.py 6.4 Numerov Mth
QuarterPlate.py 5.12 1/4 Wave Plate RelOrbits.py A.4 Relatvist Orbits
Ricci.py A.5 Ricci Tensor rk4Algor.py 1.14 rk4 Algorithm
rk4Call.py 1.12 Calls rk4 rk4Duffing.py 1.13 rk4 e.g.
SincFilter.py 2.2 Noise Filtering ScattSqWell.py 6.14 Sq Well Scatt
Scatter3dPlot.py 1.8 Scatter Plot Simple3Dplot.py 1.6 Surface Plot
SlidingBox.py 1.10 Animate Soliton.py 4.6 KdeV Soliton
SolitonAnimate.py 4.7 Soliton Movie SqBilliardCM.py 3.3 Square Billiards
SU3.py 6.22 SU(3) Quarks –

Copyright Taylor & Francis 2018.

B. Python Code Directory 393

Name Listing Description Name Listing Description
3GraphVP.py 1.2 VPython Plot 3QMdisks.py 6.17 3 QM Disks
TeleMat.py 5.13 Telegraph Eq TeleVis.py 5.14 Telegraph Viz
ThinFilm.py 5.15 Thin Film Torricelli.py 4.10 Torricelli Flow
TrapMethods.py 1.15 Trapezoid Integ TwoCharges.py 5.16 Lorentz TF Q’s
TwoFields.py 5.17 Lorentz Field TwoDsol.py 4.8 2-D Soliton
TwoForces.py 1.9 Animate e.g. TwoWells.py 6.18 T-Dep 2 Wells
UranusNeptune.py 3.5 Uranus Orbit VisualWorm.ipynb A.2 Worm Hole Viz
Walk.py 7.4 Random Walk Walk3D.py 7.5 3D Random Walk
Waves2D.py 4.4 2-D Waves Num Waves2Danal.py 4.3 2-D Waves Anal
WormHole.py A.1 Worm Hole Derv

Copyright Taylor & Francis 2018.

