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CHAPTER 1 
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1.2 (a)  2 (1)χ , by property 1 for the chi-squared distribution (page 7).  
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1.5 (b) and (c) ( )ˆ log yβ =  
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1.6 (a) The proportions of females range from 0.368 to 0.621. 
 (b) ˆ  / 0.4946i iy nθ = ∑ ∑ =

(c) Plot ( ) ( ) ( )log log 1il y nθ θ θ= ∑ + − ∑ −i iy  (ignoring the constant term), 
against θ  for various θ  and find where the minimum value is. 

 
 
 
CHAPTER 2 
 
2.1 (a) There is little evidence of any difference between the two groups. 

(b) Assuming equal variances in the two groups, the unpaired t-test of 1 2μ μ=  
against 1 2μ μ≠  gives t = 0.51, d.f. = 38, p-value = 0.613.  This provides little 
evidence against the null hypothesis that the group means are equal. 

(c) – (f) For these data . 0 1
ˆ ˆ26.2302, 26.0519S S= =

(g) F = 0.26 which is small compared to the distribution F (1, 38) so the data 
provide little evidence against 0H . 

(h) F .  The conclusions are the same. 2 20.51 0.26t = = =
(i) The residuals are consistent with the assumptions of independence, equal 

variances and Normality. 
 

2.2  (a) For an unpaired t-test, assuming equal variances, t = 0.64, d.f. = 38, p-value = 
0.524 so there is little evidence against the null hypothesis of no effect.  The 
95% confidence interval for the difference in means, 2 1,μ μ−  is 

. ( )5.68, 10.97−

(b) Let 2( ) 1E k DD μ μ μ= = −

( )
.  Then  0H  corresponds to the model. 

( )2,D DE 0 ;k D kD D ~ Nμ μ σ  and H1 corresponds to the model 

)2, .Dμ σ  The test of 0H  against 1H  yields 8.24F =  

which is statistically significant when compared with the ( )1,19F  
distribution.  The 95% confidence interval for 

= =

( ) (E ; ~k D k DD NDμ=

Dμ  is (0.718, 4.572) showing a 
statistically significant reduction in weight. 

(c) The conclusions are different.   
(d) For (a) it is assumed that the jkY ’s are independent and ( )2~ ,jk jY N μ σ  for 

all j and for all k.  For (b) it is assumed that the kD ’s are independent with 

)2
D(~ ,k DD N μ σ .  The analysis in (b) does not involve assuming that 1kY  and 

2kY  (i.e., ‘before’ and ‘after’ weights for the same man) are independent, so it 
is more appropriate. 
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    and  X = . 
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CHAPTER 3 
 
3.1 (a) Response: = weight – continuous scale, possibly Normally distributed; iY

Explanatory variables: 1ix =  age, 2ix =  sex (indicator variable), 3ix =  height, 

4ix =  mean daily food intake, and 5ix =mean daily energy expenditure; 

( ) ( )2
0 1 1 2 2 3 3 4 4 5 5E ;i i i i i i i i iY x x x x x Y N~ , .μ β β β β β β μ σ= = + + + + + . 

 
(b) Response: Y =  number of mice infected in each group of 20n = mice; 

Explanatory variables: 1,...,i 5ix x  as indicator variables for exposure levels; 
~iY  binomial ( , in )π  because ‘infection’ is a binary outcome (but the 

plausibility of the assumption of independence of infection for mice depends 
on the experimental conditions); 
( ) 0 1 1 2 2 3 3 4 4 5i i i i ig x x x xπ β β β β β β= + + + + + 5ix  with the kβ ’s subject to a 

corner point or sum-to-zero constraint. 
 

(c) Response: iY =  number of trips per week; 
Explanatory variables: 1ix =  number of people in the household, 2ix =  
household income, 3ix =  distance to supermarket; 

~iY Poisson ( )iλ  is a simple model for count data with 

0 1 1 2 2 3log i i i 3ix x xλ β β β β= + + + . 
 

3.2  ( ) ( ) ( ) ( ) ( ) ( ), , log log and 1a y y b c d y yθ θ θ φ θ φ φ= = − = − Γ = − log .   

  Hence ( )E /Y φ θ=  and ( ) 2var /Y φ θ= . 
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3.3 (a) exp ( )log 1 log yθ θ− +⎡ ⎤⎣ ⎦  

(b) exp ( )log yθ θ−  

(c) exp ( )
1

log log log 1
1

y r
r y

r
θ θ

⎡ + −⎛ ⎞
+ + −⎢ ⎥⎜ ⎟−⎝ ⎠⎣ ⎦

⎤
 

 
3.5  If log (death rate) is plotted against log (age), where the variable age has 

values 30, …, 65, then the points are close to a straight line. 
  Simple linear regression produces the estimate 

              ˆ logy = (death rate) =  – 18.909 + 6.152 log (age)  

     (with 2R =  0.969 – see Section 6.3.2).  This provides a good approximate 
model although it is based on the Normal distribution not the Poisson 
distribution. 

  Estimates of numbers of deaths in each age group can be obtained from 

  . The resulting values are shown in the following 
table 

( )ˆ ˆexp /100,000i i id y n= ×

 
Age group Actual deaths Estimated 

deaths 
30–34 
35–39 
40–44 
45–49 
50–54 
55–59 
60–64 
65–69 

1 
5 
5 
12 
25 
38 
54 
65 

1.33 
3.02 
7.07 
11.89 
18.73 
30.12 
57.09 
86.68 

 
3.6 (a) ( ) ( ){ }exp log log 1 log 1i i i iy π π π⎡ ⎤− − + −⎣ ⎦  

 (f) As the dose, x, increases the probability of death, π , increases from near zero 
to an asymptotic value of 1. 

3.7    Yes, ( ) / /exp; loyyf y e eφ θ φ g θθ φ
φ φ

−⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
− . 

 
3.8  The Pareto distribution belongs to the exponential family (see Exercise 3.3(a)), 

but it does not have the canonical form so this is not a generalized linear 
model. 
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3.9  The Normal distribution is a member of the exponential family and has the 
canonical form.  If the exponential function is taken as the link function, then 

  ( ) ( )0 1 2exp exp logi ixμ β β β= + +⎡ ⎤⎣ ⎦  

  ( )*
0 1 2 ixβ β β= +  

  1 2
* *

ixβ β= +  
  which is the linear component. 
 
3.10  ( ) ( ) ( )log , , loga y y b cθ θ θ= = − = θ  and ( ) logd y y= −  so that 

  ( ) ( )
( )

1E .
c'

a Y
b'

θ
θ θ

= − =⎡ ⎤⎣ ⎦  

  1 logU y
θ

= −  so ( ) [ ]1E logU E Y
θ

= − = 0  

  ( ) 2var U θ −= =I  by equation (3.15). 
 
 
CHAPTER 4   
 
4.1 (b)  The plot of log iy  against  is approximately linear with a non-zero 

intercept. 
log i

(c)  From (4.23) . ( )exp T
ii iw = x β

  From (4.24) ( )/ exp 1T T
i i i iz y⎡ ⎤= + −⎣ ⎦x β x β . 

   Starting with ( ) ( )0 0
1 2 1b b= = , subsequent approximations are (0.652, 1.652), 

(0.842, 1.430), (0.985, 1.334), …, (0.996, 1.327). 
 
(d) The Poisson regression model is 
      . ˆlog 0.996 1.327 logi iλ = +
 

4.2 Note: the rows in Table 4.6 on page 68 are wrongly labeled. 
 (a) y decreases, approximately exponentially, as x increases. 
 (b) log 
 (c) There is a mistake here; ( )E 1/Y θ= , and ( ) 2var 1/Y θ=  

  Fitted model is .    . ( )ˆlog 8.4775 1.1093y = − x
(e) The model fits the data well; the residuals are small, except for the last 

observation ( )  which has 2.46765, 5y x= = r = . 
 

4.3  log-likelihood, ( ) ( )2
2

1log 2 log
2 il N yσ π β
σ

= − − ∑ − . 

  Solve ( )2

1 log 0i
dl y
d

β
β σ β
= ∑ − =  to obtain ˆlog yβ = . 

 
 
 

 5



CHAPTER 5 

5.1 / (1 )n π π= −I  so for (a) and  (b) Wald statistic ( )
( )

2

1
y n

n
π

π π
−

= =
−

 score statistic. 

 (c)  deviance 
�

( )
�( )

( )
1

2 log log
1

y n y
ππ

π π

⎡ ⎤−
⎢ ⎥= + −
⎢ ⎥−
⎣ ⎦

 

  where ˆ /y nπ = . 
(d)  The 95th percentile of the 2 (1)χ  distribution is 3.84 which can be used as the 

critical value. 
(i)   Wald/score statistic = 4.44, log-likelihood statistic = 3.07; so the first 
would suggest rejecting 0.1π =  and the second would not. 

  (ii) Both statistics equal zero and would not suggest rejecting 0.3π = . 
  (iii) Wald/score statistic = 1.60, log-likelihood statistic = 1.65, so neither 

would suggest rejecting 0.5π = . 
 

5.2 Deviance 2 log
ˆ ˆ

i i

i i

y y
y y

⎡ ⎤⎛ ⎞
= ∑ − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
1 .  

 

5.3 (a) ˆ
log i

N
y

θ =
∑

. 

 (b) 2

N
θ

=I  so the Wald statistic is 
( ) 2

2

ˆ Nθ θ

θ

−
. 

 (c) Approximate 95% confidence limits are given by 
( )ˆ

1.96N
θ θ

θ

−
= ± ,  

  hence the limits are $ 1.961/ N
θ

⎛ ⎞
⎜ ⎟
⎝ ⎠
m . 

 (d) About 1 in 20 intervals should not contain θ . 
 
 
5.4 (a) (– 1.92, – 0.30). 
 (b) deviance difference = 26.282 – 19.457 = 6.825; comparing this with  

gives p-value = 0.009 which provides strong evidence that the initial white 
blood cell count is a statistically significant predictor of survival time. 

( )2 1χ
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CHAPTER 6 
 

6.1 (a) Annual per capita consumption of refined sugar decreased by – 4.88 kg per 
decade (95% confidence interval: – 6.24, – 3.53) using the 97.5th percentile of 
t(4).  Consumption of sugar in manufactured foods increased by 3.62 kg per 
decade (95% confidence interval: 2.26, 4.98). 

 
 (b)  Annual per capita total consumption of sugar declined by –1.27 kg per decade 

(95% confidence interval: – 3.44, 0.91) so we cannot reject the hypothesis of 
no change (t = –1.61, d.f. = 4, p-value = 0.182). 

 
6.2  The quadratic model  yield = 2471 + 73.8K  – 0.515K2  fits the data reasonably 

well. 
 
6.3 

Model Terms D Degrees of 
Freedom 

∆D 

6.6 
6.7 
(a) 
(b) 

Age + weight + protein 
Weight + protein 
Age + protein 
Protein 

567.66 
606.02 
833.57 
858.65 

16 
17 
17 
18 

 
38.36 

 
25.08 

 

 Using models (6.6) and (6.7) 38.36 567.66 1.08
1 16/f = =  

 Using models (a) and (b) 25.08 833.57 0.51
1 17/f = = . 

   In this case neither comparison provides evidence against the null hypothesis 
that response is unrelated to age.  More importantly, however, this example 
shows that analyses to examine the effect of any variable on the response 
depend on which other explanatory variables are included in the model (unless 
the variables are orthogonal). 

 
6.4 (c)  Model D Degrees of freedom 

Age + BMI 
Age 

26.571 
31.636 

27 
28 

 
 
 

To test the effect of body mass index (BMI), after adjustment for age, use 
31.636 26.571 26.571 5.147

28 27 27/f −
= =

−
 

which is significant compared with the F (1, 27) distribution.  So these data 
suggest that cholesterol level is positively associated with body mass index. 

 
6.5 (a)   

Source of 
variation 

Degrees of  
freedom 

Sum of 
squares 

Mean 
square 

f p-value 

Mean 1 350.919    
Between groups 2     7.808 3.904 11.65 <0.001 
Residual 28     9.383 0.335   
Total 31  368.110    

 7



 
Compared with the F (2, 28) distribution the value of f = 11.65 is very 
significant so we conclude the group means are not all equal.  Further analyses 
are needed to find which means differ. 

  
 (b)   Using the pooled standard deviation s = 0.5789 (from all groups) and the 

97.5th percentage point for t (28), the 95% confidence interval is given by 

  ( ) 1 13.9455 3.4375 2.048 0.5789
11 8

− ± × + , i.e. (–0.043, 1.059) 

 
6.6  

Source of variation Degrees of 
freedom 

Sum of 
squares 

Mean 
square 

f p-value

Mean 1 51122.50    
Between workers 3 54.62 18.21 14.45 <0.001 
Between days 1 6.08 6.08 4.83 <0.05 
Interaction 3 2.96 0.99 0.79  
Residual 32 40.20 1.26   
Total 40 51226.36    

 
  There are significant differences between workers and between days but no 

evidence of interaction effects. 
 
6.7 

Model Deviance Degrees of freedom 
( )j k jkμ α β αβ+ + +    5.00 4 

j kμ α β+ +    6.07 6 

jμ α+    8.75 7 

kμ β+  24.33 8 
μ  26.00 9 

 

 (a)    6.07 5 5 0.43
2 4/f −

= =  so there is no evidence of interaction; 

 
(b)    (i) ΔD  =  18.26;   

   (ii) ΔD = 17.25. The data are unbalanced so the model effects are not 
orthogonal. 

 
6.8 

Model Deviance Degrees of freedom 
j j xμ α+  9.36 15 

j xμ α+  10.30 17 
xμ α+  27.23 19 

jμ  26.86 18 
μ  63.81 20 
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 (a)  63.81 26.86 26.86 12.38
2 18/f −

= =  which indicates that the treatment effects 

are significantly different, if the initial aptitude is ignored. 
 

 (b) 10.30 9.63 9.63 0.52
2 15/f −

= =  so there is no evidence that initial aptitude has 

different effects for different treatment groups. 
 
 
 
CHAPTER 7 
 
7.1  If dose is defined by the lower end of each dose interval (that is, 0, 1, 10, …, 

200), a good model is given by ( )ˆlogit 3.489 0.0144 doseπ = − + . 

  The Hosmer Lemeshow test of goodness of fit can be obtained from the 

following table of observed and expected frequencies (the expected 

frequencies are shown in brackets) 

 

  This gives 2
HLX = 0.374, d. f. = 1, p-value = 0.54 indicating a good fit. 

dose leukemia other cancer 

0 13 (11.6) 378 (379.4) 

1 – 49 10 (11.5) 351 (349.5) 

50+ 25 (24.9) 111 (111.1) 

7.2 (a)  if and only if ( )1 2exp 1φ β β= − = 1 2β β= . 

 (b) ( ) (1 2 1 2expj jx )φ α α β β⎡ ⎤= − + −⎣ ⎦  is constant if 1 2β β=  
 
7.3 Overall the percentage of women who survived 50 years after graduation 

(84%) was higher than the percentage of men who survived (67%). 
(a) No evidence of differences between years of graduation. 

 (b) and (c) Higher proportions of science graduates of either sex survived than 
graduates of other faculties. 

      (d) The effect seems more pronounced for men (ratio of proportions = 1.40) than 
for women (ratio = 1.18) but this is not statistically significant. 

 
7.4  (a) ( ) ( ) ( ) ( )0 1 max min max2 2D D l b l b l b l b C− = − − − =⎡ ⎤ ⎡⎣ ⎦ ⎣ ⎤⎦  

(b)  For this hypothesis ( ) ( )2 2
0 1~ 1 , ~D N D Nχ χ p− −  so ( )2 . ~ 1C pχ −
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CHAPTER 8 
 
8.2 (a) Satisfaction was lower in apartments or houses than in tower blocks. Contact 

was lower in tower blocks. However, satisfaction was high in tower blocks 

with high contact. 

 (b) A nominal logistic regression model, without interaction terms for house type 

and contact, fits the data fairly well (Pearson X2 = 6.932, d.f. = 4, p-value = 

0.140; deviance = 6.893, d.f. = 4, p-value = 0.142). Most of the parameter 

estimates are significantly different from zero. The improvement in fit 

obtained by including interaction terms is not statistically significant. 

(c) As satisfaction is an ordinal variable an ordinal logistic regression model is 

plausible. A proportional odds model without interaction terms for house type 

and contact fits fairly well (Pearson X2 = 11.64, d.f. = 7, p-value = 0.113; 

deviance = 11.70, d.f. = 7, p-value = 0.111). However adding interaction 

terms produces a marginally significant improvement (deviance difference = 

6.20, d.f. = 2, p-value = 0,045). 

(d) Nominal and ordinal logistic regression models produce similar parameter 

estimates and similar fitted values in this case. On the grounds of parsimony 

the ordinal model would be preferred but if interaction terms are included 

then there is only one less parameter and the interpretation is more 

complicated. The fit of the nominal logistic regression model is shown in the 

table below. 

house type contact satisfaction observed 
frequency 

estimated 
frequency 

Pearson 
residual 

tower  block low low 65 59.995 0.646 
tower block high low 34 39.005 -0.801 
tower block low medium 54 53.893 0.015 
tower block high medium 47 47.107 -0.016 
tower block low high 100 105.112 -0.499 
tower block high high 100 94.888 0.525 
apartment low low 130 125.771 0.377 
apartment high low 141 145.229 -0.351 
apartment low medium 76 75.222 0.090 
apartment high medium 116 116.778 -0.072 
apartment low high 111 116.006 -0.465 
apartment high high 191 185.994 0.367 

house low low 67 76.234 -1.058 
house high low 130 120.766 0.840 
house low medium 48 48.885 -0.127 
house high medium 105 104.115 0.087 
house low high 62 51.881 1.405 
house high high 104 114.119 -0.947 
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8.3    Exploratory analysis suggests that there is a difference between treatment 

groups for the response category ‘progressive disease’ but not for the other 

response categories. 

(a) Proportional odds model using ‘no change’ as the reference category gives the 

following odds ratio estimates: treatment, alternating vs. sequential OR = 1.16 

(95% CI: 0.77, 1.75); sex, female vs. male OR = 1.57 (95% CI: 0.88, 2.80). 

(b) The model fits poorly: Pearson X2 = 13.795, d.f. = 7, p-value = 0.055. The 

table below shows a large residual for ‘progressive disease’ in females who 

received ‘alternating’ treatment.  

treatment sex stage observed 
frequency 

expected 
frequency 

Pearson 
residual 

sequential male progressive disease 28 36.475 –1.403 
sequential male no change 45 41.758 0.502 
sequential male partial remission 29 26.293 0.528 
sequential male complete remission 26 23.474 0.521 
sequential female progressive disease 4 6.436 –0.960 
sequential female no change 12 9.929 0.657 
sequential female partial remission 5 3.756 0.642 
sequential female complete remission 2 2.880 –0.519 
alternating male progressive disease 41 35.772 0.874 
alternating male no change 44 44.924 –0.138 
alternating male partial remission 20 24.010 –0.818 
alternating male complete remission 20 20.294 –0.065 
alternating female progressive disease 12 6.271 2.288 
alternating female no change 7 10.767 –1.148 
alternating female partial remission 3 3.433 –0.234 
alternating female complete remission 1 2.529 –0.962 

 

(c) For the model in (a) the Wald statistic for alternating compared to sequential 

treatment is 0.1473/0.2094 = 0.70 (p-value = 0.482) which provides no 

support for a treatment difference. 

(d) Proportional odds models with and without terms for treatment give deviance 

= 2(–398.4509 + 398.6975) = 0.493, p-value = 0.482 (compared with the 
2 (1)χ  distribution) – the same result as (c). 

(e) Adjacent category and continuation ratio models can be fitted using SAS. A 

continuation ratio model does not describe the data any better than a 

proportional odds model. However, the adjacent categories model is better 

able to describe the treatment difference in the ‘progressive disease’ category. 

The choice of link function makes little difference to the results. 
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8.4  If the probability density function in Figure 8.2 is the Normal distribution then 

from Section 7.3 so the probit model  is appropriate. ( T
i iπ = Φ x β) 1( ) T

i iπ−Φ = x β

 

CHAPTER 9 

 

9.2 (a) Claim rates appear to increase with CAR, decrease with AGE and are higher 

for DIST = 1. 

(c) This model is simpler than (b), fits well (deviance = 53.11, d.f. = 60, p-value = 

0.72) and gives coefficients (standard errors): AGE, – 0.177 (0.018); CAR, 

0.198 (0.021); DIST, 0.210 (0.059), consistent with (a). 

 

9.3 (a) Usual chi-squared test gives X2 = 17.65, d.f. = 2, p-value < 0.001. The same 

goodness of fit statistic is obtained for the log-linear model with terms for 

treatment and response categories. 

(a) Fitted values are the ‘expected frequencies’ for a conventional chi-squared 

test. X2 = 17.65, D = 18.64 with the largest residuals for ‘small’ response. 

(b) For the placebo group the estimated probabilities for the ‘small’, ‘moderate’ 

and ‘large’ responses are 11 12 13ˆ ˆ ˆ0.638, 0.282 and 0.080,π π π= = =  

respectively. For the vaccine group there is a shift of – 1.8373 in the values of 

and ( )21 22 23ˆ ˆ ˆlog /π π π⎡ ⎤+⎣ ⎦ [ ]21 22 23ˆ ˆ ˆlog ( ) /π π π+

23ˆand 0.354.

to give 

21 22ˆ ˆ0.220, 0.426π π π= = =  

 

9.5 The log-linear model with all 3 two-way interaction terms produces the same 

results as the nominal regression model – see solutions for Exercise 8.2 (d). 

 

9.6 (c) The binary logistic regression model with case or control status as the response 

and ulcer type and aspirin use as the predictor variables produces the same 

results as the log-linear model with terms GD + CC + AP + GD×CC + GD×AP 

+ CC×AP ( see Tables 9.11 and 9.12). 
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CHAPTER 10 
 
10.1(b) Plots suggest that either the Weibull or exponential distributions with the 

proportional hazards model may be appropriate, except for a small number of 

possible outliers. 

(c) The estimated shape parameter for the Weibull distribution is  (95% 

CI: 0.731, 1.262) suggesting that the simpler exponential distribution could be 

used. 

ˆ 0.961λ =

(d) Two subjects with AG positive, white blood cell count = 100 and survival 

time = 1 have large residuals, but otherwise the Cox-Snell residuals are 

consistent with the exponential distribution with a parameter of one. These 

two points also have the largest deviance residuals. 

(e) Survival times decrease with increasing white blood cell count (estimated 

hazard ratio 0.74; 95% CI: 0.58, 0.94) and were lower for AG negative 

(estimated hazard ratio 0.36; 95% CI: 0.18, 0.74). 

 

10.2 (a) 1( )
1

S y
e yθ λ=

+
, 

1

( )
1
e yh y

e y

θ λ

θ λ

λ −

=
+

 and ( ) log(1 )H y e yθ λ= + . 

 

10.5 (a) Exponential, ( ) 1
( ) exp 1O y yθ

−
⎡= −⎣ ⎤⎦ ; Weibull, ( ) 1

( ) exp 1O y yλθ
−

⎡ ⎤= −⎣ ⎦ ; log-

logistic, ( )O y e yθ λ− −= . 

 

10.6     There was an error in the data set on the web – this has now been corrected. 

(a)  Kaplan Meier estimates Ŝ  suggest better survival for the prednisolone group 

than the group with no treatment. 

(b)  Plots of ˆlog H and against log y suggest that either the Weibull 

or log-logistic distribution might be used but the proportional hazards 

assumption may be inappropriate. 

ˆ ˆlog[ /(1 )]S S−

(c)  Cox-Snell residuals suggest the log-logistic model describes the data better 

than a Weibull model. The coefficient for prednisolone group vs. on treatment 

group is 1.33 (95% CI: 0.28, 2.38) is significantly different from zero (p-

value = 0.013). 
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CHAPTER 11 

 

11.1  

 Intercept (s.e.) Slope (s.e.) 

(a) Pooled 40.768 (6.617) 0.769 (0.092) 

(b) Data reduction   

     (i) dogs, ignoring conditions 37.308 (20.480) 0.774 (0.277) 

     (ii) conditions, ignoring dogs 40.260 (6.451) 0.768 (0.090) 

(c) Random effects   

     (i) dogs random, conditions fixed 45.393 (8.785) 0.728 (0.108) 

     (ii) conditions random, dogs fixed 44.863 (7.281) 0.629 (0.126) 

     (iii) both random 68.430 (13.348) 0.458 (0.161) 

(d) GEE   

     (i) conditions fixed * 41.531 (7.095) 0.781 (0.093) 

     (i) dogs fixed* 37.119 (5.576) 0.774 (0.097) 

* robust standard errors 

Results from the model with both ‘dog’ and ‘condition’ random effects are 

clearly inconsistent with estimates from the other models. Effects of 

‘condition’ are smaller than ‘dog’ effects and can be treated as fixed without 

affecting the estimates greatly. The best estimates are probably from the 

random effects or GEE models with ‘condition’ as a fixed effect, ‘dog’ as a 

random effect and robust estimates of standard errors. 

 

11.3 (a) For the youngest age group neither treatment appeared to work well. For the 

oldest age group most children recovered fully regardless of treatment. 

(b) If the clustering is not taken into account there are significant treatment and 

age effects. If clustering is taken into account the odds ratio for treatment is 

0.375 (95% CI: 0.113, 1.245) but the model cannot describe the age effects. 

(c) Nominal logistic regression fits well (Pearson X2 = 4.56, d.f. = 4, p-value = 

0.335). There is no significant difference between the treatment groups. This 

model does detect a significant difference between the age groups <2 and ≥6 

years but the confidence interval is wide due to few children aged 6. ≥

 

CHAPTER 12 
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12.1 (a) H1: Infection is endemic (θ > 0.5). 

 Observed data 

Prior 5 out of 10 positive 1 out of 10 positive 

P(H1)=0.5 0.408 0.002 

P(H1)=0.99 0.986 0.198 

(b) 

 Observed data 

Prior 5 out of 10 positive 1 out of 10 positive 

P(H1)=0.5 0.491 0.005 

P(H1)=0.99 0.990 0.352 

 

You can use the “Bolstad” library in R to do the calculations. For example, to 

calculate the top-left cell for part (a) 

> library(Bolstad) 

> theta.space<-(0:10)/10 

> theta.mass<-c(rep(0.5/6,6),rep(0.5/5,5)) 

> sum(theta.mass) # Check it sums to one 

> sum(theta .mass[7:11]) # Prior probability for H1 

> post<-binodp(5,10,pi=theta.space,pi.prior=theta.mass,ret=TRUE) 

> sum(post$posterior[7:11]) 

Thinking about the top-left cell of the table, there is a lot of posterior probability that 

is “missed” by the granular prior in part (a) between 0.51 and 0.60. A finer parameter 

space counts this large area of posterior probability, and hence the increased posterior 

probability for H1. 

 

12.3 (a) prior P(LHR>0) = 0.950 

(b) posterior P(LHR>0) = 0.999 

Using R: 

> post<-function(mu_0,mu_l,sigma_0,sigma_l){ 

> mu_p<-((mu_0*(sigma_l^2))+(mu_l*(sigma_0^2)))/((sigma_l^2)+(sigma_0^2)) 

> var_p<-((sigma_l^2)*(sigma_0^2))/((sigma_l^2)+(sigma_0^2)) 

> sigma_p<-sqrt(var_p) 

> print(mu_p) 

> print(sigma_p) 

> } 
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> 1-pnorm(0,0.3137,0.1907) # prior prob trt is effective 

> post(mu_0=0.3137,sigma_0=0.1907,mu_l=0.580,sigma_l=0.2206) 

> 1-pnorm(0,0.428,0.144) # prior prob trt is effective 

 

12.4 (a) Investigator’s prior is 1 overdose in 200 (mean rate = 0.005). Be(2,200) prior.  

(b) Posterior = Beta (2+0, 91-0+200) or Be(2,291), gives a mean = 2 / 293 = 0.00683 

or 1 overdose per 146.5 released prisoners. So the posterior mean has decreased 

compared to the prior, despite there being no overdoses. 

 

CHAPTER 13 

13.1 Results depend on 11 randomly generated values for θ 

θ Hypothesis P(θ) 
Prior 

P(y|θ) 
Likelihood 

P(y|θ)×P(θ) 
Likelihood×Prior 

P(θ|y) 
Posterior 

0.0008 H0 0.04 0.0000 0.0000 0.0000 
0.1082 H0 0.04 0.0000 0.0000 0.0000 
0.1306 H0 0.04 0.0001 0.0000 0.0000 
0.2121 H0 0.04 0.0011 0.0000 0.0004 
0.3994 H0 0.04 0.0421 0.0017 0.0157 
Sum  0.2000   0.0161 

0.5105 H1 0.1333 0.1272 0.0170 0.1576 
0.5180 H1 0.1333 0.1345 0.0179 0.1666 
0.6243 H1 0.1333 0.2352 0.0314 0.2914 
0.8123 H1 0.1333 0.1852 0.0247 0.2294 
0.8899 H1 0.1333 0.0708 0.0094 0.0877 
0.9134 H1 0.1333 0.0413 0.0055 0.0512 
Sum  0.8000  0.1076 0.9839 

 
For this data the posterior probability that the village is endemic is slightly higher 
0.9839 (compared to 0.9545 for equally spaced prior parameter space). A restriction 
would be to have at least one generated value below 0.5 and at least one above 0.5. 
Similarly you could say at least two, or three, etc. This restriction is equivalent to 
using a prior distribution that covers the likely values for θ. 
 
13.2 (a) R code: 

> theta=vector(1000,mode="numeric") 

> accept=vector(1000,mode="numeric") 

> theta[1]=0.5 

> accept[1]=NA 

> for (i in 1:1000){ 

>    Q<-runif(1,-1,1) # proposal U[-1,1] 

>    theta_star<-theta[i]+Q 

>    pstar<-dnorm(theta_star,mean=0,sd=1)  
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>    p<-dnorm(theta[i],mean=0,sd=1) 

>    alpha<-min(pstar/p,1) 

>    U<-runif(1,0,1) # acceptance r.v. 

>    if (U>=alpha){theta[i+1]=theta[i] 

>    accept[i]=0} 

>    if (U<alpha){theta[i+1]=theta_star 

>    accept[i]=1} 

> } 

> sum(accept[2:1000])/999 # acceptance probability 

> hist(theta) 

> plot(theta,type='b') 

Acceptance rate = 0.799 
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(b) For Q~U[-0.1,0.1] 

Acceptance rate = 0.974 
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For Q~U[-10,10] 

 17



Acceptance rate = 0.161 
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The smaller Uniform proposal takes only small steps (which are often accepted) and 

barely reaches the tails of the standard Normal distribution. In contrast the larger 

Uniform proposal has reached the tails, but the history also shows periods where the 

proposal is not accepted. This means certain modes will be over-represented, although 

the histogram above has smoothed any multi-modality.  

(c) q ≈ 2.17 gives an approximately 60% acceptance rate 

(d) based on 10,000 samples 
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13.3 (c) monotonically increasing (S-shaped), skewed towards larger probabilities 

(smallest probability is around 10%)  

(d) Assumptions: Independence between observations, vague normal priors for 

unknowns, Binomial distribution for success probability 

(e) A constant risk of p=0.63 

 18



(f) The results of this exercise change greatly depending on whether you used the 

Metropolis-Hastings or Gibbs sampler. The default in BRugs (version 0.4-1) is the 

Gibbs sampler which gives results like those below. 

5000 6000 7000 8000 9000 10000

18
22

26

'beta[2]'

iteration

0 5 10 15 20 25 30 35

0.
0

0.
4

0.
8

Lag

A
C

F

'beta[2]'

 
The default in WinBUGS (version 1.4) is the Metropolis-Hastings, which gives much 

poorer chains as shown below. 
beta[1]

iteration
5001 6000 8000 10000

  -40.0

  -35.0

  -30.0

  -25.0

  -20.0

 
(g) The chains based on a centred dose using M-H sampling will improve 

 change in 

dramatically due to the likelihood becoming less precipitous (more like a hill than a 

sharp ridge). The centred chains using Gibbs sampling don’t change much. 

(h) Slow decline in the deviance (with M-H sampling) matched by a slow

the beta parameters. The estimates are slowly creeping towards a “good” solution. 

(i)  
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The extreme value link clearly gives a better fit to the observed data. 

 

13.4 (a) Estimate )|( βyD using the sampled value of the deviance (out of all 1000 

samples) that is closest to β  (i.e. the pair of β1 and β2 that are closest to the mean). 

(b)–(d) 

Version  

)|( βyD  

(Dbar) 

)ˆ|( βyD  

(Dhat) pD DIC 

dicStats()  31.266 29.649 1.617 32.883 
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Mean of β  for β  ˆ 31.266 29.65 1.616 32.882 

Median of β for β  ˆ 31.266 29.66 1.606 32.872 

Half variance of D(.)  31.266  1.505 32.771 

There’s very little difference from using the mean or median in this example, this is 

because the three-dimensional deviance was quite symmetrical (spherical). The half-

variance method gives an almost identical result too, it might have been different if 

the deviance distribution was more skewed. 

(e) 

Version  

)|( βyD  

(Dbar) 

)ˆ|( βyD  

(Dhat) pD DIC 

dicStats()  39.473 37.443 2.030 41.503 

Mean of β  for β  ˆ 39.473 37.45 2.023 41.496 

Median of β for β  ˆ 39.473 37.64 1.833 41.306 

Half variance of D(.)  39.473  1.888 41.361 

The extreme value link is always a better model, no matter how is calculated. 

The histories for the extreme value link showed poor mixing, and a fairer comparison 

would have been achieved using a longer burn-in and thinning for both link functions.  

)ˆ|( βyD

(f) Multiple posterior means or medians (use half the variance of D(.) in this case). A 

non-spherical deviance (thinking only two parameters) could have a posterior mean 

far from the posterior variance, which may then give different DIC estimates 

depending on which method was used. 

 

CHAPTER 14 

 

14.3 (a) pD = 2.90, DIC = 219 (5,000 burn-in and 10,000 sample) 

(b) pD = 1.94, DIC = 221 (5,000 burn-in and 10,000 sample) 

So really very little difference between the models, so go for Exponential on the 

grounds of parsimony (exactly as per section 10.7). 

 

14.4 (a) r = –0.30 

(b) r = –0.35, 95% PI = –0.68, 0.06. It might seem surprising that the correlation is 

negative. The reason is because those with the lowest intercepts had the most amount 

of room for improvement (intercepts lower than the average paired with slopes higher 
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than the average). Conversely those who were already scoring close to 100 had little 

room for improvement (intercepts higher than the average paired with slopes lower 

than the average). 

 

14.5  

(b) 

model{ 

# likelihood 

  for(subject in 1:N) { # loop in subject 

      ability[subject,1:T] ~ dmnorm(mu[subject,1:T],omega.obs[1:T,1:T]);  

      for(time in 1:T) { # loop in time  

       mu[subject,time] <- alpha.c[group[subject]] + 

(beta[group[subject]]*time); 

       } # end of time loop 

  } # end of subject loop 

# inverse variance-covariance matrix 

       omega.obs[1,1] <- tau.obs; omega.obs[T,T] <- tau.obs; 

       for (j in 2:T-1){ omega.obs[j, j] <- tau.obs*(1+pow(rho,2));} # diagonal 

       for (j in 1:T-1){ omega.obs[j, j+1] <- -tau.obs*rho; 

                                omega.obs[j+1, j] <- omega.obs[j, j+1];} # symmetry 

       for (i in 1:T-1) { 

          for (j in 2+i:T) { 

             omega.obs[i, j] <- 0; omega.obs[j, i] <- 0; 

          } 

       } 

# priors 

    tau.obs ~ dgamma(0.001,0.001); 

       rho~dunif(-0.99,0.99); # correlation parameter 

       beta[1] ~ dnorm(0,1.0E-4); # Linear effect of time (group=A) 

       beta[2] ~ dnorm(0,1.0E-4);  

       beta[3] ~ dnorm(0,1.0E-4);  

       alpha.c[1]~dnorm(0,1.0E-4); # Centred intercept (group=A) 

       alpha.c[2]~dnorm(0,1.0E-4); 

       alpha.c[3]~dnorm(0,1.0E-4); 

# scalars 
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       b.diff[1]<-beta[2]-beta[1]; 

       b.diff[2]<-beta[3]-beta[1]; 

       alpha[1]<-alpha.c[1]+50; # re-adjust intercept 

       alpha[2]<-alpha.c[2]+50; 

       alpha[3]<-alpha.c[3]+50; 

       a.diff[1]<-alpha[2]-alpha[1]; 

       a.diff[2]<-alpha[3]-alpha[1]; 

    var.obs <- 1 / (tau.obs*(1-pow(rho,2))); # sigma^2 

} 

(d) roughly means that we have observed the covariance matrix in a previous sample 

of 500, and are confident that it is applicable to this data 

(e) Both posteriors estimates of  show a steadily increasing variance over time 

(values along the diagonal). As expected using a strong prior has produced a posterior 

with very similar values to the prior. Using the strong prior the estimated number of 

parameters was only just above the number of parameters from the independent 

correlation model (7.6 compared to 7.0). The small number parameters needed for this 

unstructured covariance combined with the high degree of freedom in the estimates 

has given the best fit. 

V̂
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