1st Edition

Thermodynamics of the Glassy State

By Luca Leuzzi, Th. M Nieuwenhuizen Copyright 2008
    368 Pages
    by CRC Press

    364 Pages
    by CRC Press

    In the past thirty years, the area of spin glasses has experienced rapid growth, including the development of solvable models for glassy systems. Yet these developments have only been recorded in the original research papers, rather than in a single source. Thermodynamics of the Glassy State presents a comprehensive account of the modern theory of glasses, starting from basic principles (thermodynamics) to the experimental analysis of one of the most important consequences of thermodynamics-Maxwell relations.

    After a brief introduction to general theoretical concepts and historical developments, the book thoroughly describes glassy phenomenology and the established theory. The core of the book surveys the crucial technique of two-temperature thermodynamics, explains the success of this method in resolving previously paradoxical problems in glasses, and presents exactly solvable models, a physically realistic approach to dynamics with advantages over more established mean field methods. The authors also tackle the potential energy landscape approach and discuss more detailed theories of glassy states, including mode coupling, avoided critical point, replica, and random first order transition theories.

    This reference lucidly explores recent theoretical advances in the thermodynamics of slowing-aging (glassy) systems. It details the general properties of glassy states while also demonstrating how these properties are present in specific models, enabling readers to thoroughly understand this fundamental yet challenging area of study.

    Introduction. Theory and Phenomenology of Glasses. Two-Temperature Thermodynamics. Exactly Solvable Models for the Glassy State. Aging Urn Models. Glassiness in a Directed Polymer Model. Potential Energy Landscape Approach. Theories of the Glassy State. Bibliography. Index.

    Biography

    Leuzzi, Luca; Nieuwenhuizen, Th. M