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The natural world is filled with lessons in structural design. 
The strength of a doubly curved eggshell, the bending 
resistance of folded leaves, and the shape of cantilevered 
tree branches, are all instructive for designers as models 
for how to shape materials into elegant and efficient 
structural forms. Fabric-formed concrete elements have 
the potential to explore and capitalize on many of the 
same principles that enable structures in nature, due to 
the inherent structural “intelligence” of the mould’s flexible 
membrane. This chapter describes basic concepts of 
structural form, identifies inspirational precedents, and 
suggests areas for future exploration.
	 The organic shaping of structures has been explored 
at length by others, in particular, D’Arcy Thompson 
(Thompson 1917) On Growth and Form and Frei Otto’s 
work on Finding Form (Otto and Rasch 1996). Two 
fundamental concepts are useful for the fabric formwork 
designer: funicular forms and force flow in solids. Both 
have been used by fabric formwork designers and both 
offer a powerful starting point for the future of more 
efficient and beautiful concrete structures.

Funicular forms
The term funicular, as it is used here, means “tension-only” 
or “compression-only” for a given loading. This is typically 
considered as the shape taken by a hanging chain for 
a given set of loads. Because flexible materials such as 
chains, ropes, and textiles offer no resistance in bending 
or compression, they can only form funicular structures 
that most efficiently follow the flow of tension forces. 
The most efficient way to resist a force is through axial 
tension, and the second most efficient mode of structural 
resistance is axial compression. Bending, the method of 
resistance used in frame structures, is relatively inefficient, 
at least in terms of the amount of material required for 
the structure. The relative virtues of different structural 
systems and geometries, and the choice of one system 
over another, involve multiple factors, but in terms of pure 
material consumption the answer is clear – funicular forms 
are extraordinarily efficient. 
	 A key symmetry in nature is the mirrored, inverse, 
relationship of tension and compression: if a flexible 
hanging chain (a funicular tension structure) has each of 
its links welded together, and is then flipped upside-down 
(inverted), it will stand as a funicular compression arch. 
The same strategy can be deployed in three dimensions 
using a hanging sheet of fabric loaded with a thin layer 
of wet concrete that is allowed to harden (see Chapter 
11). Once inverted, the hard concrete acts as a funicular 
compression vault supporting its self-weight. This makes 
an architectural structure whose spatial surface is the 
shape of its own structural resistance to gravity.
	 The earliest example of this kind of form-finding for 
an ideal arch in compression can be traced to the English 
scientist Robert Hooke (1635–1703) who, in 1676, first 
articulated this symmetry: “Ut pendet continuum flexile, sic 
stabit contiguum rigidum inversum” (“As hangs the flexible 
line, so but inverted will stand the rigid arch”) (Heyman 
1997). The form of the ideal arch depends on the applied 
loading. For a chain of constant weight per unit length, 
the shape of a hanging chain acting under self-weight 
is a catenary (Figure 3.1). But if the load is uniformly 
distributed horizontally (as in a suspension bridge), the 
ideal arch would take the form of a parabola, which is 
slightly different. The chain or cable assumes different 
geometries according to the loading. Thus, even a simple 
two-dimensional arch has infinite possible forms that 
act in pure compression, depending on the distribution 
of weight and the rise of the arch. A simple experiment 
with string and small weights can be used to explore the 
families of funicular forms that are possible. The flexible 
string will immediately solve the structural form problem 
for any loading pattern by adjusting its shape accordingly.
	 To continue the analogy with Hooke’s hanging chain, 
a three-dimensional web of hanging chains, technically 
called a cable net, can describe a variety of dome shapes. 
This is essentially how Robert Hooke envisioned the 
primary masonry dome of St Paul’s Cathedral in London 
in his collaboration with architect Christopher Wren 
(1632–1723) – a cubico-parabolical conoid form which 
is the ideal form of a compressive dome with zero hoop 

40 Fabric Formwork

Figure 3.1 Hooke’s hanging chain and the inverted rigid 
catenary arch, as depicted by Poleni (1748)
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forces (Heyman 1998). However, many more forms are 
possible for shells. Three-dimensional funicular systems 
are considerably more complex than two-dimensional 
arches because of the multiple load paths that are 
possible through a three-dimensional surface. Unlike a 
two-dimensional arch, a three-dimensional shell can carry 
a wide range of different loadings, through membrane 
behavior, without introducing bending. 
	 When flat fabric sheets are used to form three-
dimensional funicular structures, the geometric 
possibilities become even more interesting. The warp and 
weft threads of a woven fabric form a kind of a cable net. 
By the shearing action of the warp and weft threads, a 
flat woven sheet can, to a certain extent, produce smooth 
double curvatures without buckling (see Figure 4.2, p. 53). 
However, deeper curvatures will start to produce buckles 
in the sheet. Concentrated tension forces in the sheet will 
tend to produce pull-buckles along the principal lines of 
force, as seen in Figure 3.2. (For more on pull-buckles 
see Chapter 4, pp. 60–3.) These buckled shapes have the 
potential to create structurally useful corrugations (see 
Chapter 11: Hanging sheet moulds, pp. 220–3). Such flat-
sheet behaviors introduce a new vocabulary for thin-shell 
structures, waiting to be explored by architects, engineers, 
and builders. Engineer Heinz Isler (1926–2009) derived 
such forms from hanging physical models to provide 
stiffening corrugations near the edges of his compressive 
shells in concrete (Chilton 2000).
	 Structural designers can take inspiration from any 
number of sources, but Robert Hooke’s powerful axiom 
provides a clear path forward. The tensile capacity of 
the formwork membrane and the compressive capacity 
of concrete perfectly complement each other, while the 
very act of casting provides the geometric inversion that 
can “flip” a convex tension-net geometry into a concave 
compression shell geometry. By minimizing bending 
forces, designers can build more efficiently and can 
make better use of limited resources. By understanding 
and exploring the infinite possibilities for even highly 
constrained design problems, designers can continue to 
discover new structural forms for centuries to come.

Flow of forces in solids
Leaving the discussion of funicular shells, we turn our 
attention to the shaping of structural members, such 
as columns, beams, and walls. Concealed within the 
volume of each loadbearing piece of material – concrete, 
wood, steel, glass, stone, brick, even the soil beneath 
the foundations – is an orderly and predictable pattern 
of pushes and pulls. Each pattern is established by the 
forces that are applied to the piece of material and the 
shape of the piece itself, in such a way that the piece does 
its share of the work of supporting the bridge or building 
with minimal work. When the applied forces change, due 
to a change in the direction or intensity of the wind, or a 
relocation of the loads on the building floor or bridge deck, 
all the patterns of pushing and pulling change instantly to 
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Figure 3.2 Flat-sheet funicular vault forms: a) pull-buckles 
form corrugated ribs radiating from a shell’s corner 
supports; b) buckles form corrugated ribs radiating from 
the shell’s primary supports (see Chapter 11: Hanging 
sheet moulds, p. 220, and Figures 11.37–40, pp. 220–3, in 
particular)
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more efficient patterns for the new loading condition. The 
structure actually “redesigns” its own way of resisting the 
load in a fraction of a second. 
	 The flow of internal forces in structural members can 
be described using three patterns: the parallel, the fan, 
and the lattice. These patterns, singly and in combination, 

are all that any structural member requires in order to 
resist any pattern of external forces, no matter how 
complex, in an efficient manner. 
	 An axial push or pull on a long, slender structural 
member produces a parallel pattern of flow in the member, 
as diagramed in Figure 3.3 (all the diagrams in this 
chapter use blue lines to indicate compression forces and 
red dashed lines to indicate tension forces). The parallel 
flow pattern may also occur in a long, uniformly loaded 
wall or plate.
	 If a force is concentrated on a small area on the top 
of a long wall, or thin plate, the force fans out within the 
wall, as illustrated in Figure 3.4a. The intensity of the 
concentrated applied force diminishes as the fan opens 
out into the material (the force’s intensity, i.e. stress, can 
be gauged by how closely spaced the illustrated lines of 
force are). The same pattern of force flow is produced in a 
wall of plate subjected to a concentrated tension force, as 
illustrated in Figure 3.4b.
	 If the concentrated force on the top of the wall is 
equilibrated by an equal but opposite concentrated force 
pushing up on the bottom edge of the wall (Figure 3.5), 
each of the two forces establishes a similar fan pattern of 
internal forces. Now, however, the lines of force in the two 
fans curve to meet their opposites. If the external forces 
change from compression to tension, the forces within 
the wall are reversed, with compression becoming tension 
and tension becoming compression, but the configuration 
(shape) of the force flow does not change. The length 
of wall that is stressed by the concentrated external 
forces, top and bottom, does not exceed the distance 
between the two external forces (d). Thus the wall does 
its entire work of resisting these two forces within a small, 
circular area, leaving the remainder of the wall totally 
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Figure 3.4 Lines of compression or tension in a solid plate or wall due to a concentrated point load

a) compression b) tension

Figure 3.3 Parallel flow of tension or compression force in 
a slender, axially loaded member

WEST (Fabric Formwork Book) PRINT.indd   62 06/09/2016   15:41

Taylor & Francis: Not for Distribution



43Structural Intelligence in Flexible Materials

Figure 3.5 Circular fanning pattern produced by two equal and opposing concentrated forces in a solid wall or plate

d

d

unaffected.
	 The third pattern of flow, the lattice, occurs primarily 
in the web portions of beams. If the depth of a beam is 
everywhere proportional to the bending moment, the 
flow lines of compressive and tensile force are parallel. 
If, however, the depth is not proportional to the bending 
moments – for example, in a rectangular, uniformly loaded 
beam (Figure 3.6) – then the force flow lines are diverted 
to create static equilibrium at every point in the beam. This 

establishes a lattice pattern, in which longitudinal forces 
veer off by diffusing themselves in opposing tensile and 
compressive forces. This expenditure is the means by 
which the resistance of the beam is made proportional to 
the applied bending moment. In concrete beams, areas 
between lines of principal stresses can be removed, 
following the concepts of strut and tie models in concrete 
(Schlaich et al. 1987).

Figure 3.6 Lattice pattern of tension and compression forces within the depth of a uniformly loaded, rectangular beam
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Following curved force flows 
in fabric-formed structures
These descriptions demonstrate how the flow of forces 
through structural material nearly always describes three-
dimensional curvatures. As mentioned at the start of this 
chapter, natural structures that grow material in response 
to stress concentrations reflect these curvatures in their 
shapes. It is difficult to build curved structures that follow 
efficient structural shapes, using conventional, rigid, 
prismatic building materials. But flexible moulds allow us 
to construct curved shapes that can more closely follow 
the theoretical force flow though a structure as a means 
of reducing the volume of materials consumed in our 
constructions. Engineering research into more efficiently 
shaped fabric-formed reinforced concrete beams has 
begun to explore the full complexity of this strategy (Lee 
(2010), Orr et al. (2011), Orr et al. (2012), Orr (2012). 
(See also Figures 10.4, 10.5, and 10.20–32, pp. 172 and 
184–91.) Flexible self-forming funicular moulds can even 
“self-construct” optimized structural shapes automatically 
(see Chapter 11 generally, and in particular Figures 
11.61–81, pp. 236–48). 
	 The great structural designer Pier Luigi Nervi (1891–
1979), who is most famous for his elegant and efficient 
structures based on the curvature of force flows, wrote 
about the prospects for more beautiful (and rational) 
concrete structures: “One must not forget that all these 
promising developments are made possible by the 
progressive liberation of reinforced concrete from the 
fetters of wooden forms. Until these bonds are totally 
removed, the architecture of concrete structures is bound 
to be … an architecture of wooden planks” (Nervi 1956). 
	 Flexible moulds present a profoundly different regime 
from that of conventional, rigid mould construction. 
Figures 3.7 and 3.8 illustrate one example of a simple 
strategy for casting a structure that follows force flows 
in pure compression. By shaping concrete to be placed 
exclusively in compression, the need for reinforcing 
steel may be reduced to a minimum. Here a “bulge-wall” 
technique (see Chapter 8, p. 145 and Figures 12.3–11, 
pp. 252–7) is used to form what might be called a 
“compression frame” structure. 
	 The hanging chain model (inverted) in Figure 3.7 
shows a schematic design for a series of funicular thin-
shell vaults (the white strings) (see Chapter 11: Hanging 
sheet moulds, pp. 220–7 for construction of funicular 
vaults). These are supported by shallow compression 
arches that branch into, and guide, the flow of 
compression force into integrally cast supporting columns 
(sketched in yellow chalk). The “bulge-wall” formwork 
for a plaster model of the supporting compression frame 
structure is shown in Figure 3.8. Note that the thrust of 
the end-bay arches is received by an integrally cast shear 
wall.

Figure 3.7 A hanging chain model (top) “draws” the shape 
of a funicular compression frame structure when inverted 
(middle). The plaster model (bottom, and Figure 3.8) 
illustrates the structure cast to this structurally efficient 
shape
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Pressurized membranes – 
a co-incidence of skins
In Chapter 10, we see that the shape taken by a 
membrane forming a straight, horizontal, open trough 
mould follows perfectly an elastica curve drawn using 
a uniform stiffness spline (see Figures 10.12 and 10.13, 
p. 178). By varying the width of fabric and/or trough, 
an infinite variation of forms is possible for hanging 
membranes under internal fluid pressure (Figure 3.9) 
(Iosilevskii 2009, Levien 2008, Orr 2012).
	 These funicular curvatures of various horizontal trough 
mould sections have their own elastica-based shapes. 
A vertical fabric-formed pressure vessel, like a column 
mould, will have a circular section. If a pressurized fabric 
mould is held diagonally, it will take a different shape 
under pressure, somewhere between a circle and the 
elastica curves shown in Figure 3.9.
	 It is highly efficient to carry forces in tension within a 
membrane, making fabric moulds extraordinarily efficient 
structures in their own right, using dramatically less 
material than rigid moulds (see Figure 9.7, p. 160, and 
Figure 10.2, p. 170). The natural world offers up numerous 
examples of fluid-filled membranes acting in tension: 
minimal surfaces of soap films, or “packing” problems 
such as kernels of ripe corn on the surface of a corn cob. 
Many fruits, such as apples, cherries, and pears, shape 
themselves in ways that coincide with the shape of an 
optimal structure with uniform membrane stress under 
vertical gravity load when supported from a point in the 
center (their stems) (Querin 1997). Many of the most 
remarkable natural structures rely on funicular forms to 
carry loads with a minimal amount of material. 
	 The same geometry that accounts for the great 
material efficiency of flexible moulds also accounts for 
the fact that fabric-cast concrete is so reminiscent of 
vegetables, or animals’ bodies, which are also fluid-filled 
structures (see Chapter 1, New language of form, p. 11). 
Adopting this same simple strategy in mould-making 
frees concrete from the straitjacket of prismatic moulds, 
opening new horizons for the economical construction 
of more efficient, more sustainable, and more beautiful 
reinforced concrete structures. 

Figure 3.8 “Bulge-wall” formwork used to cast the 
compression frame structure shown in Figure 3.7
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Figure 3.9 Elastica curves, from uniform stiffness splines, describing cross-sections of a variety of horizontal open trough 
vessels (Orr 2012, after Josilevskii 2009)

Materials Savings in Flexible Fabric Moulds
�The remarkable reduction in the amount of material needed to construct a fabric mould, when compared with 
conventional, rigid, panelized moulds, is explained by two fundamental factors:

�1. 	� A flexible fabric, or membrane, resists imposed forces in pure tension, which is the single most efficient way to 
resist a force. Rigid moulds resist force through bending – a far less efficient mode of structural resistance.

�2.	� A flat, rigid mould is a zero-deflection structure, which means it must work very hard to keep everything as flat 
as possible. This requires a high degree of stiffness, which inevitably leads to formwork structures of much greater 
depth, and hence greater material volume and weight. A flat, rigid mould fights against the forces imposed by the 
wet concrete, but a flexible mould actually uses those forces to produce the most efficient mould shape possible. 
We can say that flat formwork panels dream of having the curves of a pressurized fabric mould-wall.

�These two factors make curved, tension membrane formworks extraordinarily efficient in terms of material use: 
hundreds of times less material (measured either in terms of weight or volume) is required to construct a robust fabric 
mould compared to conventional panelized moulds. (Other efficiencies are discussed in Chapter 10.) This stunning 
efficiency leads to some dramatically different logistical possibilities. For example, the column formworks for the Casa 
Dent columns (shown in Figures 8.29, 8.30, and 8.38d, pp. 150–1 and 155) were flown from Winnipeg, Canada, to 
the Island of Culebra, Puerto Rico, as checked luggage. These three duffel bags contained the fabric moulds for 13 
individually sculptured columns, plus several spares. After casting, the moulds were flown back, again as checked 
luggage, for use in future projects. 
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