1st Edition

21st Century Nanoscience – A Handbook Low-Dimensional Materials and Morphologies (Volume Four)

Edited By Klaus D. Sattler Copyright 2021
    484 Pages 411 B/W Illustrations
    by CRC Press

    484 Pages 411 B/W Illustrations
    by CRC Press

    21st Century Nanoscience - A Handbook: Low-Dimensional Materials and Morphologies (Volume 4) will be the most comprehensive, up-to-date large reference work for the field of nanoscience. Handbook of Nanophysics by the same editor published in the fall of 2010 and was embraced as the first comprehensive reference to consider both fundamental and applied aspects of nanophysics. This follow-up project has been conceived as a necessary expansion and full update that considers the significant advances made in the field since 2010. It goes well beyond the physics as warranted by recent developments in the field. This fourth volume in a ten-volume set covers low-dimensional materials and morphologies.

    Key Features:

    • Provides the most comprehensive, up-to-date large reference work for the field.
    • Chapters written by international experts in the field.
    • Emphasises presentation and real results and applications.

    This handbook distinguishes itself from other works by its breadth of coverage, readability and timely topics. The intended readership is very broad, from students and instructors to engineers, physicists, chemists, biologists, biomedical researchers, industry professionals, governmental scientists, and others whose work is impacted by nanotechnology. It will be an indispensable resource in academic, government, and industry libraries worldwide. The fields impacted by nanophysics extend from materials science and engineering to biotechnology, biomedical engineering, medicine, electrical engineering, pharmaceutical science, computer technology, aerospace engineering, mechanical engineering, food science, and beyond.

    Advances in 1D Materials - Palomino Garate

    Survey of Low-Dimensional Materials -Jiang

    Low-Dimensional Hybrid Nanomaterials -Ahmad

    Aromatic Helicenes -Stara

    Supported Two-Dimensional Metal Clusters -Guo, Q.

    A Novel Class of Two-Dimensional Materials: Transition Metal Dichalcogenides - Zhao

    Two-Dimensional Gallium Nitride - Behzad

    Graphene Nanodot Arrays -Camilli

    Graphene Nanomeshes -Maarouf

    Dielectric Harmonic Nanoparticles: Optical Properties, Synthesis, and Applications -Bonacina

    Fundamentals of Laser-Generated Nanoparticles in Liquid Phase -Ortac

    Nanoparticles at the Polarized Liquid-Liquid Interface  - Opallo

    Terahertz Resonance of Nanoparticles in Water - Gordon

    Water Photosplitting on Gold Nanoparticles: Quantum Selectivity and Dynamics - Meng

    Onion-Like Inorganic Fullerenes from a Polyhedral Perspective - Chang

    Magnetic Properties of Endohedral Fullerenes: Applications and Perspectives - Porfyrakis

    Titania Nanotubes - Varghese

    Carbon Nanotubes and Carbon Nanotube Fibers - Abot

    Hall Effect Characterization of Nanowires - Hultin

    Metal Oxide Nanowire Arrays - Guiton

    Electrospinning and Electrospun Nanofibers - Zhang

    Nanopore Structures and their Applications - Wang

    Methane Storage in Nanoporous Carbons - Cabria

    Metal Hydroxide and Oxide Nanocages -Guo, L.


    Klaus D. Sattler pursued his undergraduate and master’s courses at the University of Karlsruhe in Germany. He received his PhD under the guidance of Professors G. Busch and H.C. Siegmann at the Swiss Federal Institute of Technology (ETH) in Zurich. He was at the University of California, Berkeley, for three years as a Heisenberg fellow, where he initiated the first studies of atomic clusters on surfaces with a scanning tunneling microscope. Dr. Sattler accepted a position as professor of physics at the University of Hawaii, Honolulu, in 1988. In 1994, his group produced the first carbon nanocones. His current work focuses on novel nanomaterials and solar photocatalysis with nanoparticles for the purification of water. He is the editor of the sister references, Carbon Nanomaterials Sourcebook (2016) and Silicon Nanomaterials Sourcebook (2017), as well as Fundamentals of Picoscience (2014). Among his many other accomplishments, Dr. Sattler was awarded the prestigious Walter Schottky Prize from the German Physical Society in 1983. At the University of Hawaii, he teaches courses in general physics, solid state physics, and quantum mechanics.