A Theoretical Introduction to Numerical Analysis  book cover
1st Edition

A Theoretical Introduction to Numerical Analysis





ISBN 9781584886075
Published November 2, 2006 by Chapman & Hall
552 Pages 50 B/W Illustrations

FREE Standard Shipping
USD $120.00

Prices & shipping based on shipping country


Preview

Book Description

A Theoretical Introduction to Numerical Analysis presents the general methodology and principles of numerical analysis, illustrating these concepts using numerical methods from real analysis, linear algebra, and differential equations. The book focuses on how to efficiently represent mathematical models for computer-based study.

An accessible yet rigorous mathematical introduction, this book provides a pedagogical account of the fundamentals of numerical analysis. The authors thoroughly explain basic concepts, such as discretization, error, efficiency, complexity, numerical stability, consistency, and convergence. The text also addresses more complex topics like intrinsic error limits and the effect of smoothness on the accuracy of approximation in the context of Chebyshev interpolation, Gaussian quadratures, and spectral methods for differential equations. Another advanced subject discussed, the method of difference potentials, employs discrete analogues of Calderon’s potentials and boundary projection operators. The authors often delineate various techniques through exercises that require further theoretical study or computer implementation.

By lucidly presenting the central mathematical concepts of numerical methods, A Theoretical Introduction to Numerical Analysis provides a foundational link to more specialized computational work in fluid dynamics, acoustics, and electromagnetism.

Table of Contents

Introduction. Interpolation of Functions. Quadratures. Systems of Scalar Equations. The Method of Finite Differences for the Numerical Solution of Differential Equations. The Methods of Boundary Equations for the Numerical Solution of Boundary Value Problems. References. Index.

...
View More

Author(s)

Biography

Victor S. Ryaben'kii, Semyon V Tsynkov

Reviews

“… presents the general methodology and principles of numerical analysis, illustrating the key concepts using numerical methods from real analysis, linear algebra, and differential equations. The book focuses on hoe to efficiently represent mathematical models for computer-based study. … this book provides a pedagogical account of the fundamentals of numerical analysis. … provides a foundation link to more specialized computational work in mathematics, science, and engineering. … Discusses three common numerical areas: interpolation and quadratures, linear and nonlinear solvers, and finite differences. Explains the most fundamental and universal concepts, including error, efficiency, complexity, stability, and convergence. Addresses advance topics, such as intrinsic accuracy limits, saturation of numerical methods by smoothness, and the method of difference potentials. Provides rigorous proofs for all important mathematical results. Includes numerous examples and exercises to illustrate key theoretical ideas and to enable independent study. ”
— In Mathematical Reviews, Issue 2007g


“It is an excellent book, having a wide spectrum of classical and advanced topics. The book has all the advantages of the Russian viewpoint as well as the Western one.”
—David Gottlieb, Brown University, Providence, Rhode Island, USA