1st Edition

An Introduction to Computational Systems Biology Systems-Level Modelling of Cellular Networks

By Karthik Raman Copyright 2021
    358 Pages 49 B/W Illustrations
    by Chapman & Hall

    358 Pages 49 B/W Illustrations
    by Chapman & Hall

    358 Pages 49 B/W Illustrations
    by Chapman & Hall

    This book delivers a comprehensive and insightful account of applying mathematical modelling approaches to very large biological systems and networks—a fundamental aspect of computational systems biology. The book covers key modelling paradigms in detail, while at the same time retaining a simplicity that will appeal to those from less quantitative fields.

    Key Features:

    • A hands-on approach to modelling
    • Covers a broad spectrum of modelling, from static networks to dynamic models and constraint-based models
    • Thoughtful exercises to test and enable understanding of concepts
    • State-of-the-art chapters on exciting new developments, like community modelling and biological circuit design
    • Emphasis on coding and software tools for systems biology

    • Companion website featuring lecture videos, figure slides, codes, supplementary exercises, further reading, and appendices: https://ramanlab.github.io/SysBioBook/

    An Introduction to Computational Systems Biology: Systems-Level Modelling of Cellular Networks is highly multi-disciplinary and will appeal to biologists, engineers, computer scientists, mathematicians and others.

    Preface


    Introduction to modelling 
    1.1 WHAT IS MODELLING? 
    1.1.1 What are models? 
    1.2 WHYBUILD MODELS? 
    1.2.1 Why model biological systems? 
    1.2.2 Why systems biology? 
    1.3 CHALLENGES IN MODELLING BIOLOGICAL SYSTEMS 
    1.4 THE PRACTICE OF MODELLING 
    1.4.1 Scope of the model
    1.4.2 Making assumptions 
    1.4.3 Modelling paradigms 
    1.4.4 Building the model 
    1.4.5 Model analysis, debugging and (in)validation 
    1.4.6 Simulating the model 
    1.5 EXAMPLES OF MODELS 
    1.5.1 Lotka–Volterra predator–prey model 
    1.5.2 SIR model: a classic example 
    1.6 TROUBLESHOOTING 
    1.6.1 Clarity of scope and objectives 
    1.6.2 The breakdown of assumptions 
    1.6.3 Ismy model fit for purpose? 
    1.6.4 Handling uncertainties 
    EXERCISES 
    REFERENCES 
    FURTHER READING 

    Introduction to graph theory 
    2.1 BASICS 
    2.1.1 History of graph theory 
    2.1.2 Examples of graphs 
    2.2 WHYGRAPHS? 
    2.3 TYPES OF GRAPHS 
    2.3.1 Simple vs. non-simple graphs 
    2.3.2 Directed vs. undirected graphs 
    2.3.3 Weighted vs. unweighted graphs 
    2.3.4 Other graph types 
    2.3.5 Hypergraphs 
    2.4 COMPUTATIONAL REPRESENTATIONS OF GRAPHS 
    2.4.1 Data structures 
    2.4.2 Adjacency matrix 
    2.4.3 The laplacian matrix 
    2.5 GRAPH REPRESENTATIONS OF BIOLOGICAL NETWORKS 
    2.5.1 Networks of protein interactions and functional associations
    2.5.2 Signalling networks 
    2.5.3 Protein structure networks 
    2.5.4 Gene regulatory networks 
    2.5.5 Metabolic networks 
    2.6 COMMONCHALLENGES&TROUBLESHOOTING 
    2.6.1 Choosing a representation 
    2.6.2 Loading and creating graphs 
    2.7 SOFTWARE TOOLS 
    EXERCISES 
    REFERENCES 
    FURTHER READING 

    Structure of networks 
    3.1 NETWORK PARAMETERS 
    3.1.1 Fundamental parameters 
    3.1.2 Measures of centrality 
    3.1.3 Mixing patterns: assortativity 
    3.2 CANONICAL NETWORK MODELS 
    3.2.1 Erdos–Rényi (ER) network model 
    3.2.2 Small-world networks 
    3.2.3 Scale-free networks 
    3.2.4 Other models of network generation 
    3.3 COMMUNITY DETECTION 
    3.3.1 Modularity maximisation 
    3.3.2 Similarity-based clustering 
    3.3.3 Girvan–Newman algorithm 
    3.3.4 Other methods 
    3.3.5 Community detection in biological networks 
    3.4 NETWORKMOTIFS 
    3.4.1 Randomising networks 
    3.5 PERTURBATIONS TO NETWORKS 
    3.5.1 Quantifying e□fects of perturbation 
    3.5.2 Network structure and attack strategies 
    3.6 TROUBLESHOOTING 
    3.6.1 Is your network really scale-free? 
    3.7 SOFTWARE TOOLS 
    EXERCISES 
    REFERENCES
    FURTHER READING 


    Applications of network biology 
    4.1 THE CENTRALITY–LETHALITY HYPOTHESIS 
    4.1.1 Predicting essential genes fromnetworks 
    4.2 NETWORKS AND MODULES IN DISEASE 
    4.2.1 Disease networks 
    4.2.2 Identification of disease modules 
    4.2.3 Edgetic perturbation models 
    4.3 DIFFERENTIAL NETWORK ANALYSIS 
    4.4 DISEASE SPREADING ON NETWORKS 
    4.4.1 Percolation-based models 
    4.4.2 Agent-based simulations 
    4.5 MOLECULAR GRAPHS AND THEIR APPLICATIONS 
    4.5.1 Retrosynthesis 
    4.6 PROTEIN STRUCTURE, ENERGY & CONFORMATIONAL NETWORKS
    4.6.1 Protein folding pathways 
    4.7 LINK PREDICTION 
    EXERCISES 
    REFERENCES 
    FURTHER READING 

    Introduction to dynamic modelling
    5.1 CONSTRUCTING DYNAMIC MODELS 
    5.1.1 Modelling a generic biochemical system 
    5.2 MASS-ACTION KINETIC MODELS 
    5.3 MODELLING ENZYME KINETICS 
    5.3.1 The Michaelis–Menten model 
    5.3.2 Extending the Michaelis–Menten model 
    5.3.3 Limitations of Michaelis–Menten models 
    5.3.4 Co-operativity: Hill kinetics 
    5.3.5 An illustrative example: a three-node oscillator 
    5.4 GENERALISED RATE EQUATIONS 
    5.4.1 Biochemical systems theory 
    5.5 SOLVING ODES 
    5.6 TROUBLESHOOTING 
    5.6.1 Handing sti□f equations 
    5.6.2 Handling uncertainty 
    5.7 SOFTWARE TOOLS 
    EXERCISES 
    REFERENCES 
    FURTHER READING 

    Parameter estimation 
    6.1 DATA-DRIVEN MECHANISTIC MODELLING: AN OVERVIEW 
    6.1.1 Pre-processing the data 
    6.1.2 Model identification 
    6.2 SETTING UP AN OPTIMISATION PROBLEM 
    6.2.1 Linear regression 
    6.2.2 Least squares 
    6.2.3 Maximumlikelihood estimation 
    6.3 ALGORITHMS FOR OPTIMISATION 
    6.3.1 Desiderata 
    6.3.2 Gradient-based methods 
    6.3.3 Direct search methods 
    6.3.4 Evolutionary algorithms 
    6.4 POST-REGRESSION DIAGNOSTICS 
    6.4.1 Model selection 
    6.4.2 Sensitivity and robustness of biological models 
    6.5 TROUBLESHOOTING 
    6.5.1 Regularisation 
    6.5.2 Sloppiness 
    6.5.3 Choosing a search algorithm 
    6.5.4 Model reduction 
    6.5.5 The curse of dimensionality 
    6.6 SOFTWARE TOOLS 
    EXERCISES 
    REFERENCES 
    FURTHER READING 

    Discrete dynamic models: Boolean networks 
    7.1 INTRODUCTION 
    7.2 BOOLEAN NETWORKS: TRANSFER FUNCTIONS 
    7.2.1 Characterising Boolean network dynamics 
    7.2.2 Synchronous vs. asynchronous updates 
    7.3 OTHER PARADIGMS 
    7.3.1 Probabilistic Boolean networks 
    7.3.2 Logical interaction hypergraphs 
    7.3.3 Generalised logical networks 
    7.3.4 Petri nets 
    7.4 APPLICATIONS 
    7.5 TROUBLESHOOTING 
    7.6 SOFTWARE TOOLS 
    EXERCISES 
    REFERENCES 
    FURTHER READING 

    Introduction to constraint-based modelling 
    8.1 WHAT ARE CONSTRAINTS? 
    8.1.1 Types of constraints 
    8.1.2 Mathematical representation of constraints 
    8.1.3 Why are constraints useful? 
    8.2 THE STOICHIOMETRICMATRIX 
    8.3 STEADY-STATEMASSBALANCE:FLUXBALANCEANALYSIS (FBA)
    8.4 THE OBJECTIVE FUNCTION 
    8.4.1 The biomass objective function 
    8.5 OPTIMISATION TO COMPUTE FLUX DISTRIBUTION 
    8.6 AN ILLUSTRATION 
    8.7 FLUX VARIABILITY ANALYSIS (FVA) 
    8.8 UNDERSTANDING FBA 
    8.8.1 Blocked reactions and dead-end metabolites 
    8.8.2 Gaps in metabolic networks 
    8.8.3 Multiple solutions
    8.8.4 Loops 
    8.8.5 Parsimonious FBA (pFBA) 
    8.8.6 ATP maintenance fluxes 
    8.9 TROUBLESHOOTING 
    8.9.1 Zero growth rate 
    8.9.2 Objective values vs. flux values 
    8.10 SOFTWARE TOOLS 
    EXERCISES 
    REFERENCES 
    FURTHER READING 

    Extending constraint-based approaches 
    9.1 MINIMISATION OF METABOLIC ADJUSTMENT (MOMA) 
    9.1.1 Fitting experimentally measured fluxes 
    9.2 REGULATORY ON-OFF MINIMISATION (ROOM) 
    9.2.1 ROOMvs.MoMA 
    9.3 BI-LEVEL OPTIMISATIONS 
    9.3.1 OptKnock
    9.4 INTEGRATING REGULATORY INFORMATION 
    9.4.1 Embedding regulatory logic: regulatory FBA (rFBA) 
    9.4.2 Informing metabolic models with omic data 
    9.4.3 Tissue-specific models 
    9.5 COMPARTMENTALISED MODELS 
    9.6 DYNAMIC FLUX BALANCE ANALYSIS (dFBA) 
    9.7 13C-MFA 
    9.8 ELEMENTARY FLUX MODES AND EXTREME PATHWAYS 
    9.8.1 Computing EFMs and EPs 
    9.8.2 Applications 
    EXERCISES 
    REFERENCES 
    FURTHER READING

    Perturbations to metabolic networks
    10.1 KNOCK-OUTS 
    10.1.1 Gene deletions vs. reaction deletions 
    10.2 SYNTHETIC LETHALS 
    10.2.1 Exhaustive enumeration 
    10.2.2 Bi-level optimisation 
    10.2.3 Fast-SL: massively pruning the search space 
    10.3 OVER-EXPRESSION 
    10.3.1 Flux Scanning based on Enforced Objective Flux (FSEOF) 
    10.4 OTHER PERTURBATIONS 
    10.5 EVALUATING AND RANKING PERTURBATIONS 
    10.6 APPLICATIONS OF CONSTRAINT-BASED MODELS 
    10.6.1 Metabolic engineering 
    10.6.2 Drug target identification 
    10.7 LIMITATIONS OF CONSTRAINT-BASED APPROACHES 
    10.7.1 Scope of genome-scale metabolic models 
    10.7.2 Incorrect predictions 
    10.8 TROUBLESHOOTING
    10.8.1 Interpreting gene deletion simulations 
    10.9 SOFTWARE TOOLS

    EXERCISES 
    REFERENCES 
    FURTHER READING 

    Modelling cellular interactions 
    11.1 MICROBIAL COMMUNITIES 
    11.1.1 Network-based approaches 
    11.1.2 Population-based and agent-based approaches 
    11.1.3 Constraint-based approaches 
    11.2 HOST–PATHOGEN INTERACTIONS (HPIs) 
    11.2.1 Network models 
    11.2.2 Dynamic models 
    11.2.3 Constraint-based models 
    11.3 SUMMARY
    11.4 SOFTWARE TOOLS 
    EXERCISES 
    REFERENCES 
    FURTHER READING 

    Designing biological circuits 
    12.1 WHAT IS SYNTHETIC BIOLOGY? 
    12.2 FROMLEGO BRICKS TO BIOBRICKS 
    12.3 CLASSIC CIRCUIT DESIGN EXPERIMENTS 
    12.3.1 Designing an oscillator: the repressilator 
    12.3.2 Toggle switch 
    12.4 DESIGNING MODULES 
    12.4.1 Exploring the design space 
    12.4.2 Systems-theoretic approaches 
    12.4.3 Automating circuit design 
    12.5 DESIGN PRINCIPLES OF BIOLOGICAL NETWORKS 
    12.5.1 Redundancy 
    12.5.2 Modularity 
    12.5.3 Exaptation 
    12.5.4 Robustness 
    12.6 COMPUTING WITH CELLS 
    12.6.1 Adleman’s classic experiment 
    12.6.2 Examples of circuits that can compute 
    12.6.3 DNA data storage 
    12.7 CHALLENGES 
    12.8 SOFTWARE TOOLS 
    EXERCISES 
    REFERENCES 
    FURTHER READING 


    Robustness and evolvability of biological systems 
    13.1 ROBUSTNESS IN BIOLOGICAL SYSTEMS 
    13.1.1 Key mechanisms 
    13.1.2 Hierarchies and protocols 
    13.1.3 Organising principles 
    13.2 GENOTYPE SPACES AND GENOTYPE NETWORKS 
    13.2.1 Genotype spaces 
    13.2.2 Genotype–phenotype mapping 
    13.3 QUANTIFYING ROBUSTNESS AND EVOLVABILITY 
    13.4 SOFTWARE TOOLS 
    EXERCISES 
    REFERENCES 
    FURTHER READING 


    Epilogue: The Road Ahead 
    Index 325

    Biography

    Dr. Karthik Raman is an Associate Professor at the Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras. He co-founded and co-ordinates the Initiative for Biological Systems Engineering and is a core member of the Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI). He has been a researcher in the area of systems biology for the last 15+ years and has been teaching a course on systems biology for the last eight years, to (mostly) engineers from different backgrounds. His lab works on computational approaches to understand and manipulate biological networks, with applications in metabolic engineering and synthetic biology.

    This is a very comprehensive read that provides a solid base in computational biology. The book is structured in 4 parts and 14 chapters which cover all the way from the more basic concepts to advanced material, including the state-of-the-art methodologies in synthetic and systems biology. This is a bedside book for those researchers embarking to do investigation in computational biology and a great office companion for anyone working on systems and synthetic biology.

    -- Rodrigo Ledesma Amaro, Lecturer, Imperial College London 

    This is a fantastic book.  It offers an elegant introduction to both classical and modern concepts in computational biology.  To the uninitiated, it is a terrific first read, bringing alive the glory of the past and the promise of the future.  To the interested, it handholds and offers a springboard to dive deep.  To the practitioner, it serves as a valuable resource bringing together in a panoramic view many diverse streams that adorn the landscape.

    -- Narendra M. Dixit, Professor, Indian Institute of Science