April Super Saver • 20% OFF EVERYTHING • Shop Now

1st Edition

An Introduction to Statistical Inference and Its Applications with R

By Michael W. Trosset Copyright 2009
    ISBN 9781032477725
    496 Pages 72 B/W Illustrations
    Published January 21, 2023 by CRC Press

    United States Flag Free Shipping (6-12 Business Days)
    shipping options

    Original Price $54.95
    Sale Price USD $43.96
    ISBN 9781584889472
    496 Pages 72 B/W Illustrations
    Published June 23, 2009 by Chapman & Hall

    United States Flag Free Shipping (6-12 Business Days)
    shipping options

    Original Price $115.00
    Sale Price USD $92.00
    Continue Shopping

    Emphasizing concepts rather than recipes, An Introduction to Statistical Inference and Its Applications with R provides a clear exposition of the methods of statistical inference for students who are comfortable with mathematical notation. Numerous examples, case studies, and exercises are included. R is used to simplify computation, create figures, and draw pseudorandom samples—not to perform entire analyses.





    After discussing the importance of chance in experimentation, the text develops basic tools of probability. The plug-in principle then provides a transition from populations to samples, motivating a variety of summary statistics and diagnostic techniques. The heart of the text is a careful exposition of point estimation, hypothesis testing, and confidence intervals. The author then explains procedures for 1- and 2-sample location problems, analysis of variance, goodness-of-fit, and correlation and regression. He concludes by discussing the role of simulation in modern statistical inference.





    Focusing on the assumptions that underlie popular statistical methods, this textbook explains how and why these methods are used to analyze experimental data.

    Experiments. Mathematical Preliminaries. Probability. Discrete Random Variables. Continuous Random Variables. Quantifying Population Attributes. Data. Lots of Data. Inference. 1-Sample Location Problems. 2-Sample Location Problems. The Analysis of Variance. Goodness-of-Fit. Association. Simple Linear Regression. Simulation-Based Inference. R: A Statistical Programming Language. Index.

    Biography

    Michael W. Trosset is Professor of Statistics and Director of the Indiana Statistical Consulting Center at Indiana University.

    We offer free standard shipping on every order across the globe.

    Free Shipping (6-12 Business Days)