1st Edition

Applied Mathematical Modeling A Multidisciplinary Approach

Edited By Douglas R. Shier, K.T. Wallenius Copyright 1999
    472 Pages
    by CRC Press

    468 Pages
    by CRC Press

    The practice of modeling is best learned by those armed with fundamental methodologies and exposed to a wide variety of modeling experience. Ideally, this experience could be obtained by working on actual modeling problems. But time constraints often make this difficult. Applied Mathematical Modeling provides a collection of models illustrating the power and richness of the mathematical sciences in supplying insight into the operation of important real-world systems. It fills a gap within modeling texts, focusing on applications across a broad range of disciplines. The first part of the book discusses the general components of the modeling process and highlights the potential of modeling in practice. These chapters discuss the general components of the modeling process, and the evolutionary nature of successful model building. The second part provides a rich compendium of case studies, each one complete with examples, exercises, and projects.In keeping with the multidimensional nature of the models presented, the chapters in the second part are listed in alphabetical order by the contributor's last name. Unlike most mathematical books, in which you must master the concepts of early chapters to prepare for subsequent material, you may start with any chapter. Begin with cryptology, if that catches your fancy, or go directly to bursty traffic if that is your cup of tea.Applied Mathematical Modeling serves as a handbook of in-depth case studies that span the mathematical sciences, building upon a modest mathematical background. Readers in other applied disciplines will benefit from seeing how selected mathematical modeling philosophies and techniques can be brought to bear on problems in their disciplines. The models address actual situations studied in chemistry, physics, demography, economics, civil engineering, environmental engineering, industrial engineering, telecommunications, and other areas.

    THE IMPACT AND BENEFITS OF MATHEMATICAL MODELING Introduction Mathematical Aspects, Alternatives, Attitudes Mathematical Modeling Teaching Modeling Benefits of Modeling Educational Benefits Modeling and Group Competition Other Benefits of Modeling The Role of Axioms in Modeling The Challenge References REMARKS ON MATHEMATICAL MODEL BUILDing Introduction An Example of Mathematical Modeling Model Construction and Validation Model Analysis Some Pitfalls Conclusion References UNDERSTANDING THE UNITED STATES AIDS EPIDEMIC Introduction Prelude: The Postwar Polio Epidemic AIDS: A New Epidemic for America Why an AIDS Epidemic in America? A More Detailed Look at the Model Forays into the Public Policy Arena Modeling the Mature Epidemic AIDS as a Facilitator of Other Epidemics Comparisons with First World Countries Conclusion: A Modeler's Portfolio References A MODEL FOR THE SPREAD OF SLEEPING SICKNESS Introduction The Compartmental Model Mathematical Results Discussion Alternative Models Exercises and Projects References MATHEMATICAL MODELS IN CLASSICAL CRYPTOLOGY Introduction Some Terminology of Cryptology Simple Substitution Systems The Vigenere Cipher and One-Time Pads The Basic Hill System and Variations Exercises and Projects References MATHEMATICAL METHODS IN PUBLIC-KEY CRYPTOLOGY Introduction Cryptosystems Based on Integer Factorization Cryptosystems Based on Discrete Logarithms Digital Signatures Exercises and Projects References NONLINEAR TRANSVERSE VIBRATIONS IN AN ELASTIC MEDIUM Introduction A String Embedded in an Elastic Medium An Approximation Technique Base Equation Solution of Ricatti Equation Exercises and Projects References SIMULATING NETWORKS WITH TIME-VARYING ARRIVALS Introduction The Registration Problem Generating Random Numbers Statistical Tools Arrival Processes Queueing Models Exercises and Projects References MATHEMATICAL MODELING OF UNSATURATED POROUS MEDIA FLOW AND TRANSPORT Introduction Governing Equations Constant-Coefficient Convection-Dispers


    D. R. Shier, K. T. Wallenius