Artificial Intelligence for Drug Development, Precision Medicine, and Healthcare  book cover
1st Edition

Artificial Intelligence for Drug Development, Precision Medicine, and Healthcare

ISBN 9780367362928
Published May 5, 2020 by Chapman and Hall/CRC
368 Pages 21 Color & 58 B/W Illustrations

FREE Standard Shipping
USD $119.95

Prices & shipping based on shipping country


Book Description

Artificial Intelligence for Drug Development, Precision Medicine, and Healthcare covers exciting developments at the intersection of computer science and statistics. While much of machine-learning is statistics-based, achievements in deep learning for image and language processing rely on computer science’s use of big data. Aimed at those with a statistical background who want to use their strengths in pursuing AI research, the book:

·       Covers broad AI topics in drug development, precision medicine, and healthcare.

·       Elaborates on supervised, unsupervised, reinforcement, and evolutionary learning methods.

·       Introduces the similarity principle and related AI methods for both big and small data problems.

·       Offers a balance of statistical and algorithm-based approaches to AI.

·       Provides examples and real-world applications with hands-on R code.

·       Suggests the path forward for AI in medicine and artificial general intelligence.


As well as covering the history of AI and the innovative ideas, methodologies and software implementation of the field, the book offers a comprehensive review of AI applications in medical sciences. In addition, readers will benefit from hands on exercises, with included R code.

Table of Contents

1. Overview of Modern Artificial Intelligence. 2. Classic Statistics and Modern Machine Learning. 3. Similarity Principle- Fundamental Principle of All Sciences. 4. Similarity-Principle-Based Artificial Intelligence. 5. Artificial Neural Network. 6. Deep Learning Neural Network. 7. Kernel Methods. 8. Decision Tree and Ensemble Methods. 9. Bayesian Learning Approach. 10. Unsupervised Learning. 11. Reinforcement Learning. 12. Swarm and Evolutionary Intelligence. 13. Applications of AI in Medical Science and Drug Development. 14. Future Perspectives-Artificial General Intelligence.

View More



Mark Chang is the founder of AGInception. With 12 published books, he is an adjunct professor at Boston University, an elected Fellow of the American Statistical Association, and a cofounder of the International Society for Biopharmaceutical Statistics.


"This is an interesting and informative book...The book contains R code for many applications so the reader can immediately put many of the ideas into practice by adapting the R code."
- Peter Wludyka, in Technometrics, October 2020

"This book would be a neat addition to the practitioner's reference library of statistical methodologies for healthcare data analysis based on artificial intelligence (AI) and machine learning. The technical narrative is written in recipes; these are sandwiched between a high-level introduction (comprising modern AI and machine learning, classical statistics, and the similarity principle) and an epilogue espousing the author's perspectives about future progress in modern AI. The statistical recipes include example R programming code for the following methodologies (...). It is a compactly written book that could serve as a handy reference guide (i.e., cookbook) for the practitioner who would need to quickly review a new methodology and understand the bigger picture as it would relate to applications in healthcare."
- Frank Yoon in International Statistics Review, March 2021