Avoiding Inelastic Strains in Solder Joint Interconnections of IC Devices  book cover
SAVE
$34.00
1st Edition

Avoiding Inelastic Strains in Solder Joint Interconnections of IC Devices



  • Available for pre-order. Item will ship after November 26, 2020
ISBN 9781138624733
November 26, 2020 Forthcoming by CRC Press
344 Pages - 75 B/W Illustrations

 
SAVE ~ $34.00
was $170.00
USD $136.00

Prices & shipping based on shipping country


Preview

Book Description

Avoiding Inelastic Strains in Solder Joint Interconnections of IC Devices addresses analytical (mathematical) modeling approaches aimed at understanding the underlying physics and mechanics of the behavior and performance of solder materials and solder joint interconnections of IC devices. The emphasis is on design for reliability, including probabilistic predictions of the solder lifetime.

 

  • Describes how to use the developed methods of analytical predictive modeling to minimize thermal stresses and strains in solder joint of IC devices
  • Shows how to build the preprocessing models in finite-element analyses (FEA) by comparing the FEA and analytical data
  • Covers how to design the most effective test vehicles for testing solder joints
  • Details how to design and organize, in addition to or sometimes even instead of highly accelerated life tests (HALT), highly focused and highly cost-effective failure oriented accelerated testing (FOAT) to understand the physic of failure of solder joint interconnections
  • Outlines how to convert the low cycle fatigue conditions into elastic fatigue conditions and to assess the fatigue lifetime in such cases
  • Illustrates ways to replace time- and labor-consuming, expensive, and possibly misleading temperature cycling tests with simpler and physically meaningful accelerated tests

This book is aimed towards professionals in electronic and photonic packaging, electronic and optical materials, materials engineering, and mechanical design.

Table of Contents

1. Analytical Modeling. 2. Method of Interfacial Compliance. 3. Thermal Stress in Assemblies with Identical Adherends. 4. Inelastic Strains. 5. Elevated Stand-Off Heights Can Relieve Thermal Stress in Solder Joints. 6. Stress Relief in Assemblies with Inhomogeneous Bonds. 7. Relieving Thermal Stress in Flip-Chip Design. 8. Board Level Dynamic Tests. 9. Accelerated Testing: HALT and FOAT. 10. Probabilistic Design for Reliability of Solder Joint Interconnections. 11. Thermal Stress in Optical Fibers

...
View More

Author(s)

Biography

Ephraim Suhir is Foreign Full Member (Academician) of the National Academy of Engineering, Ukraine (he was born in that country); Life Fellow of the Institute of Electrical and Electronics Engineers (IEEE); the American Society of Mechanical Engineers (ASME), the Society of Optical Engineers (SPIE) and the International Microelectronics and Packaging Society (IMAPS); Fellow of the American Physical Society (APS), the Institute of Physics (IoP), UK, and the Society of Plastics Engineers (SPE); and Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA). Ephraim has authored about 400+ publications (patents, technical papers, book chapters, books), presented numerous keynote and invited talks worldwide, and received many professional awards, including the 1996 Bell Labs Distinguished Member of Technical Staff Award and the 2004 ASME Worcester Read Warner Medal for outstanding contributions to the permanent literature of engineering. He is the third Russian American, after Stephen Timoshenko and Igor Sikorsky, who received this prestigious award.