Bayesian Approaches in Oncology Using R and OpenBUGS  book cover
1st Edition

Bayesian Approaches in Oncology Using R and OpenBUGS

ISBN 9780367350505
Published December 22, 2020 by Chapman and Hall/CRC
260 Pages 88 B/W Illustrations

FREE Standard Shipping
SAVE $24.00
was $120.00
USD $96.00

Prices & shipping based on shipping country


Book Description

Bayesian Approaches in Oncology Using R and OpenBUGS serves two audiences: those who are familiar with the theory and applications of bayesian approach and wish to learn or enhance their skills in R and OpenBUGS, and those who are enrolled in R and OpenBUGS-based course for bayesian approach implementation. For those who have never used R/OpenBUGS, the book begins with a self-contained introduction to R that lays the foundation for later chapters.

Many books on the bayesian approach and the statistical analysis are advanced, and many are theoretical. While most of them do cover the objective, the fact remains that data analysis can not be performed without actually doing it, and this means using dedicated statistical software. There are several software packages, all with their specific objective. Finally, all packages are free to use, are versatile with problem-solving, and are interactive with R and OpenBUGS.

This book continues to cover a range of techniques related to oncology that grow in statistical analysis. It intended to make a single source of information on Bayesian statistical methodology for oncology research to cover several dimensions of statistical analysis. The book explains data analysis using real examples and includes all the R and OpenBUGS codes necessary to reproduce the analyses. The idea is to overall extending the Bayesian approach in oncology practice. It presents four sections to the statistical application framework:


  • Bayesian in Clinical Research and Sample Size Calcuation
  • Bayesian in Time-to-Event Data Analysis
  • Bayesian in Longitudinal Data Analysis
  • Bayesian in Diagnostics Test Statistics


This book is intended as a first course in bayesian biostatistics for oncology students. An oncologist can find useful guidance for implementing bayesian in research work. It serves as a practical guide and an excellent resource for learning the theory and practice of bayesian methods for the applied statistician, biostatistician, and data scientist.

Table of Contents

Part 1- Bayesian in Clinical Research

Chapter 1- Introduction to R and Open BUGS

Chapter 2- Sample size determination

Chapter 3- Study Design-I

Chapter 4- Study Design-II

Chapter 5- Optimum Biological Dose Selection

Part 2- Bayesian in Time-to-Event Data Analysis

Chapter 6- Survival Analysis

Chapter 7- Competing Risk Data Analysis

Chapter 8- Frailty Data Analysis

Chapter 9- Relative Survival Analysis

Part 3- Bayesian in Longitudinal Data Analysis

Chapter 10- Longitudinal Data Analysis

Chapter 11- Missing Data Analysis

Chapter 12- Joint Longitudinal and Survival Analysis

Chapter 13- Covariance modelling

Part 4- Bayesian in Diagnostics Test Statistics

Chapter 14- Bayesian Inference in Mixed-Effect Model

Chapter 15- Concordance Analysis

Chapter 16- High Dimensional Data Analysis

View More



Atanu Bhattacharjee is an Assistant Professor at the Section of Biostatistics, Centre for Cancer Epidemiology, Tata Memorial Centre, India. He previously taught Biostatistics at the Malabar Cancer Centre, Kerala, India. He completed his PhD at Gauhati University, Assam, on Bayesian Statistical Inference. He is an elected member of the International Biometric Society (Indian Region). He served as Associate Editor of BMC Research Methodology. He has published over 200 research articles in various peer-reviewed journals.