Big Data in Medical Image Processing: 1st Edition (Hardback) book cover

Big Data in Medical Image Processing

1st Edition

By R. Suganya, S. Rajaram, A. Sheik Abdullah

CRC Press

202 pages | 17 Color Illus. | 42 B/W Illus.

Purchasing Options:$ = USD
Hardback: 9781138557246
pub: 2018-01-31
$199.95
x
eBook (VitalSource) : 9781315150741
pub: 2018-01-29
from $28.98


FREE Standard Shipping!

Description

The field of medical imaging seen rapid development over the last two decades and has consequently revolutionized the way in which modern medicine is practiced. Diseases and their symptoms are constantly changing therefore continuous updating is necessary for the data to be relevant. Diseases fall into different categories, even a small difference in symptoms may result in categorising it in a different group altogether. Thus analysing data accurately is of critical importance. This book concentrates on diagnosing diseases like cancer or tumor from different modalities of images.

This book is divided into the following domains: Importance of big data in medical imaging, pre-processing, image registration, feature extraction, classification and retrieval. It is further supplemented by the medical analyst for a continuous treatment process. The book provides an automated system that could retrieve images based on user’s interest to a point of providing decision support. It will help medical analysts to take informed decisions before planning treatment and surgery. It will also be useful to researchers who are working in problems involved in medical imaging.

Table of Contents

Big data in Medical Image Processing

An Introduction on big data, Medical Image Processing, Modality of medical images, Importance of medical images, Challenges in medical images, Hadoop & Map reduce technique.

Image Pre-processing

Introduction, Importance of Speckles in medical images, Types of filter, Different methodologies, Metrics for speckle reduction.

Image Registration

Importance of medical image registration, Mono modal registration, Multi modal image registration, Intensity vs Feature based registration, Similarity measures – correlation coefficients, Mutual information, Geometric transformation, Optimization techniques, Different approaches and its implementation, Applications of medical image registration – case study.

Texture Feature Extraction

Introduction on Texture analysis – Importance of dimensionality reduction- Types of feature extraction – Haralick texture features – feature selection- metrics

Image Classification & Retrieval

Introduction on Machine learning techniques, Supervised vs unsupervised medical image classification, Relevance feedback classifier, Binary vs multiple SVM, Neural network, Fuzzy classifier, Image Retrieval – conclusion

About the Authors

R. Suganya is Assistant Professor in the Department of Information Technology, Thiagarajar College of Engineering, Madurai. Her areas of interest include Medical Image Processing, Big Data Analytics, Internet of Things, Theory of Computation, Compiler Design and Software Engineering.

S. Rajaram currently holds the post of Associate Professor in the department of Electronics and Communication Engineering, Thiagarajar College of Engineering. His fields of interest are VLSI Design and Wireless Communication.

A. Sheik Abdullah is Assistant Professor in the Department of Information Technology, Thiagarajar College of Engineering, Madurai, Tamil Nadu, India. His research interests include Medical Data Research, E-Governance and Big Data.

Subject Categories

BISAC Subject Codes/Headings:
SCI055000
SCIENCE / Physics
TEC015000
TECHNOLOGY & ENGINEERING / Imaging Systems
TEC059000
TECHNOLOGY & ENGINEERING / Biomedical