Chirality in Biological Nanospaces: Reactions in Active Sites, 1st Edition (Paperback) book cover

Chirality in Biological Nanospaces

Reactions in Active Sites, 1st Edition

By Nilashis Nandi

CRC Press

209 pages | 19 Color Illus. | 76 B/W Illus.

Purchasing Options:$ = USD
Paperback: 9781138112698
pub: 2017-05-31
SAVE ~$16.59
Hardback: 9781439840023
pub: 2011-07-27
SAVE ~$44.00
eBook (VitalSource) : 9780429105869
pub: 2011-07-27
from $39.98

FREE Standard Shipping!


Chirality is widely studied and omnipresent in biological molecules. However, how the retention of enantiomeric forms persists in many life processes without racemization is still unclear, and the molecular understanding of the stringent chiral specificity in enzymatic reactions is sparse. An overview of the influence of chirality in driving reactions within enzymatic cavities, Chirality in Biological Nanospaces: Reactions in Active Sites covers:

  • Influences of molecular chirality on the structure of the active site and network of interactions to drive reactions with improved speed, accuracy, and efficiency
  • The conserved features of the organization of the active site structures of enzymes
  • The intricate interplay of electrostatic, hydrophobic, and van der Waals interactions
  • Interactions between the active site residues and the substrate molecules

Despite being time-consuming and expensive, trial-and-error is often the primary method used to develop synthetic enzymes. This book describes methods that combine crystallographic studies with electronic structure-based computational analysis. These methods may lead to future elucidation of new drugs that can target biological active sites with better efficacy and can be used to design custom-made novel biocytes with improved efficiency.

Table of Contents


Chirality and chiral discrimination

Enzymes, active site, and vital biological reactions

Chirality and reactions in active sites


Chiral discrimination in the active site of oxidoreductase

Cytochrome P450: discrimination in drug (warfarin) interaction

Enantioselectivity of hydride transfer of NADPH by alcohol oxidoreductase and conversion of epoxide to β-keto acid by 2-[(R)-2-hydroxypropylthio]-ethanesulfonate dehydrogenase

Lipooxygenase and cyclooxygenase: generation of chiral peroxide from achiral polyunsaturated fatty acid

Nitric oxide synthase: effects of substrate and cofactors on chiral discrimination for binding the enantiomeric ligands

Enoyl reductase: chirality dependent branching of a growing polyketide chain


Transferases and chiral discrimination

Peptidyl transferase center within ribosome: peptide bond formation and chiral discrimination

Chiral discrimination by telomerase

Chiral discrimination by HIV-1 reverse transcriptase

Chiral discrimination and nuclear DNA polymerases


Influence of chirality on the hydrolysis reactions within the active site of hydrolases

Chiral discrimination by epoxide hydrolases

Chiral discrimination by lipases


Influence of chirality on the reactions in the active site of lyases

Hydroxynitrile lyases: interaction with chiral substrates

Acceptance of both epimers of uronic acid by chondroitin lyase ABC


Chiral discrimination in the active site of ligases

Chiral discrimination by germacrene D synthases

Chiral discrimination by aminoacyl-tRNA synthetases


Summary and future



About the Author

Nilashis Nandi was born in Cooch Behar, West Bengal, India (1965). He received his B.Sc. (Hons.) (1983) and M.Sc. (1985) degrees from North Bengal University and Ph.D. (1992) from Visva Bharati University. He became a postdoctoral fellow at the Indian Institute of Science, India (1993–1997), a J.S.P.S. postdoctoral fellow at Nagoya University, Japan (1997–1999), and an Alexander von Humboldt postdoctoral fellow at the Max Planck Institute of Colloids and Interfaces, Germany (1999–2000). Dr. Nandi was a faculty member in the chemistry group of Birla Institute of Technology and Science, Pilani, India from 2001–2007 and became a professor in the Department of Chemistry, University of Kalyani in 2008 where he has worked ever since. His research interest is focused on theoretical and computational studies in biophysical chemistry.

Subject Categories

BISAC Subject Codes/Headings:
MEDICAL / Biochemistry
SCIENCE / Biotechnology
SCIENCE / Chemistry / General
SCIENCE / Physics