1st Edition

Data Science for Wind Energy

By Yu Ding Copyright 2019
    424 Pages
    by Chapman & Hall

    424 Pages 103 B/W Illustrations
    by Chapman & Hall

    424 Pages 103 B/W Illustrations
    by Chapman & Hall

    Continue Shopping

    Data Science for Wind Energy provides an in-depth discussion on how data science methods can improve decision making for wind energy applications, near-ground wind field analysis and forecast, turbine power curve fitting and performance analysis, turbine reliability assessment, and maintenance optimization for wind turbines and wind farms. A broad set of data science methods covered, including time series models, spatio-temporal analysis, kernel regression, decision trees, kNN, splines, Bayesian inference, and importance sampling. More importantly, the data science methods are described in the context of wind energy applications, with specific wind energy examples and case studies. Please also visit the author’s book site at https://aml.engr.tamu.edu/book-dswe.



    Features







    • Provides an integral treatment of data science methods and wind energy applications








    • Includes specific demonstration of particular data science methods and their use in the context of addressing wind energy needs








    • Presents real data, case studies and computer codes from wind energy research and industrial practice








    • Covers material based on the author's ten plus years of academic research and insights






     

    Chapter 1 Introduction



    Part I Wind Field Analysis



    Chapter 2 A Single Time Series Model



    Chapter 3 Spatiotemporal



    Chapter 4 Regimeswitching



    Part II Wind Turbine Performance Analysis



    Chapter 5 Power Curve Modeling and Analysis



    Chapter 6 Production Efficiency Analysis



    Chapter 7 Quantification of Turbine Upgrade



    Chapter 8 Wake Effect Analysis



    Chapter 9 Overview of Turbine Maintenance Optimization



    Chapter 10 Extreme Load Analysis



    Chapter 11 Computer Simulator Based Load Analysis



    Chapter 12 Anomaly Detection and Fault Diagnosis

    Biography

    Yu Ding is the Mike and Sugar Barnes Professor of Industrial and Systems Engineering and Professor of Electrical and Computer Engineering at Texas A&M University, and a Fellow of the Institute of Industrial & Systems Engineers and the American Society of Mechanical Engineers

    "This is the first book that focuses on the data science methodologies and their applications in a growing field, wind energy. It is well-organized and well-written. It will enhance the knowledge base of data science and its applications in the wind energy field."

    -- Elsayed A. Elsayed, Professor, Rutgers University