Deep Learning in Computer Vision : Principles and Applications book cover
SAVE
$31.50
1st Edition

Deep Learning in Computer Vision
Principles and Applications





ISBN 9781138544420
Published April 7, 2020 by CRC Press
338 Pages 124 Color & 6 B/W Illustrations

FREE Standard Shipping
 
SAVE $31.50
was $105.00
USD $73.50

Prices & shipping based on shipping country


Preview

Book Description

Deep learning algorithms have brought a revolution to the computer vision community by introducing non-traditional and efficient solutions to several image-related problems that had long remained unsolved or partially addressed. This book presents a collection of eleven chapters where each individual chapter explains the deep learning principles of a specific topic, introduces reviews of up-to-date techniques, and presents research findings to the computer vision community. The book covers a broad scope of topics in deep learning concepts and applications such as accelerating the convolutional neural network inference on field-programmable gate arrays, fire detection in surveillance applications, face recognition, action and activity recognition, semantic segmentation for autonomous driving, aerial imagery registration, robot vision, tumor detection, and skin lesion segmentation as well as skin melanoma classification. The content of this book has been organized such that each chapter can be read independently from the others. The book is a valuable companion for researchers, for postgraduate and possibly senior undergraduate students who are taking an advanced course in related topics, and for those who are interested in deep learning with applications in computer vision, image processing, and pattern recognition.

Table of Contents

Chapter 1 Accelerating the CNN Inference on FPGAs Chapter 2 Object Detection with Convolutional Neural Networks Chapter 3 Efficient Convolutional Neural Networks for Fire Detection in Surveillance Applications Chapter 4 A Multi-biometric Face Recognition System Based on Multimodal Deep Learning Representations Chapter 5 Deep LSTM-Based Sequence Learning Approaches for Action and Activity Recognition Chapter 6 Deep Semantic Segmentation in Autonomous Driving Chapter 7 Aerial Imagery Registration Using Deep Learning for UAV Geolocalization Chapter 8 Applications of Deep Learning in Robot Vision Chapter 9 Deep Convolutional Neural Networks: Foundations and Applications in Medical Imaging Chapter 10 Lossless Full-Resolution Deep Learning Convolutional Networks for Skin Lesion Boundary Segmentation Chapter 11 Skin Melanoma Classification Using Deep Convolutional Neural Networks

...
View More

Editor(s)

Biography

Mahmoud Hassaballah received the Doctor of Engineering (D. Eng.) in Computer Science from Ehime University, Japan in 2011. He was a visiting scholar with the Department of Computer & Communication Science, Wakayama University, Japan and GREAH laboratory, Le Havre Normandie University, France. He is currently an Associate Professor of Computer Science at the Faculty of Computers and Information, South Valley University, Egypt. His research interests include feature extraction, object detection/recognition, artificial intelligence, biometrics, image processing, computer vision, machine learning, and data hiding.

Ali Ismail Awad is currently an Associate Professor (Docent) with the Department of Computer Science, Electrical and Space Engineering, LuleƄ University of Technology, LuleƄ, Sweden, where he also serves as a Coordinator of the Master Programme in Information Security. He is a Visiting Researcher with the University of Plymouth, United Kingdom. He is also an Associate Professor with the Electrical Engineering Department, Faculty of Engineering, Al-Azhar University at Qena, Qena, Egypt. His research interests include information security, Internet-of-Things security, image analysis with applications in biometrics and medical imaging, and network security.