Design for Manufacturability : How to Use Concurrent Engineering to Rapidly Develop Low-Cost, High-Quality Products for Lean Production book cover
1st Edition

Design for Manufacturability
How to Use Concurrent Engineering to Rapidly Develop Low-Cost, High-Quality Products for Lean Production

ISBN 9781482204926
Published February 4, 2014 by Productivity Press
488 Pages 49 B/W Illustrations

FREE Standard Shipping
USD $79.95

Prices & shipping based on shipping country


Book Description

Design for Manufacturability: How to Use Concurrent Engineering to Rapidly Develop Low-Cost, High-Quality Products for Lean Production shows how to use concurrent engineering teams to design products for all aspects of manufacturing with the lowest cost, the highest quality, and the quickest time to stable production. Extending the concepts of design for manufacturability to an advanced product development model, the book explains how to simultaneously make major improvements in all these product development goals, while enabling effective implementation of Lean Production and quality programs.

Illustrating how to make the most of lessons learned from previous projects, the book proposes numerous improvements to current product development practices, education, and management. It outlines effective procedures to standardize parts and materials, save time and money with off-the-shelf parts, and implement a standardization program. It also spells out how to work with the purchasing department early on to select parts and materials that maximize quality and availability while minimizing part lead-times and ensuring desired functionality.

  • Describes how to design families of products for Lean Production, build-to-order, and mass customization
  • Emphasizes the importance of quantifying all product and overhead costs and then provides easy ways to quantify total cost
  • Details dozens of design guidelines for product design, including assembly, fastening, test, repair, and maintenance
  • Presents numerous design guidelines for designing parts for manufacturability
  • Shows how to design in quality and reliability with many quality guidelines and sections on mistake-proofing (poka-yoke)

Describing how to design parts for optimal manufacturability and compatibility with factory processes, the book provides a big picture perspective that emphasizes designing for the lowest total cost and time to stable production. After reading this book you will understand how to reduce total costs, ramp up quickly to volume production without delays or extra cost, and be able to scale up production rapidly so as not to limit growth.

Table of Contents


Design for Manufacturability
Manufacturing before DFM
     What DFM Is Not
     Comments from Company DFM Surveys
Myths and Realities of Product Development
Achieving the Lowest Cost
     Toyota on When Cost Is Determined
     Ultra-Low-Cost Product Development
Designing for Low Cost
     Design for Cost Approaches
          Cost-Based Pricing
          Price-Based Costing (Target Costing)
          Cost Targets Should Determine Strategy
     Cost Metrics and Their Effect on Results
     How to Design Very Low Cost Products
     Cost Reduction by Change Order
Cutting Time-to-Market in Half
Roles and Focus
     Human Resources Support for Product Development
     Job Rotation
     Management Role to Support DFM
     Management Focus
     Successful or Counterproductive Metrics for NPD
Resistance to DFM
Arbitrary Decisions
DFM and Design Time
Engineering Change Orders
Do It Right the First Time
Strategy to Do It Right the First Time
Company Benefits of DFM
Personal Benefits of DFM

Concurrent Engineering
     Front-Loading at Toyota
Ensuring Resource Availability
     Prioritizing Product Portfolios
     Prioritizing Product Development Projects
     Prioritization at Leading Companies
          Prioritization at Apple
          Product Development Prioritization at HP
          Prioritization at Toyota
          Product Prioritization for Truck Bodies
     Prioritizing Resources for Custom Orders, Low-Volume Builds, Legacy Products, and Spare Parts
     Develop Acceptance Criteria for Unusual Orders
     Make Customizations and Configurations More Efficient
     The Package Deal
     Rationalize Products
     Maximize Design Efficiency of Existing Resources
     Avoid Product Development Failures
     Avoid Supply Chain Distractions
     Optimize Product Development Project Scheduling
     Ensure Availability of Manufacturing Engineers
     Correct Critical Resource Shortages
     Invest in Product Development Resources
          R&D Investment at Medtronic
          R&D Investment at General Electric and Siemens
          R&D Investment at Apple
          R&D Investment at Samsung
Product Portfolio Planning
Parallel and Future Projects
Designing Products as a Team
     The Problems with Phases, Gates, Reviews, and Periodic Meetings
     Building Many Models and Doing Early Experiments
     Manufacturing Participation
     Role of Procurement
     Team Composition
     Team Continuity
     Part-Time Participation
     Using Outside Expertise
     The Value of Diversity
     Encouraging Honest Feedback
Vendor Partnerships
     The Value of Vendor/Partnerships
     Vendor/Partnerships Will Result in a Lower Net Cost Because
     Vendor Partner Selection
     Working with Vendor Partners
The Team Leader
     The Team Leader at Toyota
     The Team Leader at Motorola
     Team Leaders and Sponsors at Motorola
     Effect of Onshoring on Concurrent Engineering
     The Project Room (The "Great Room" or Obeya)
Team Membership and Roles
     Manufacturing and Service
     Tooling Engineers
     Purchasing and Vendors
     Industrial Designers
     Quality and Test
     Regulatory Compliance
     Factory Workers
     Specialized Talent
     Other Projects
Outsourcing Engineering
     Which Engineering Could Be Outsourced?
Product Definition
     Understanding Customer Needs
     Writing Product Requirements
     Consequences of Poor Product Definition
     Customer Input
     Quality Function Deployment
     How QFD Works

Designing the Product
Design Strategy
     Designing around Standard Parts
          Sheet Metal
          Bar Stock
     Off-the-Shelf Parts
     Proven Processing
     Proven Designs, Parts, and Modules
     Arbitrary Decisions
     Minimizing Tolerance Demands
     System Integration
     Optimizing All Design Strategies
     Design Strategy for Electrical Systems
     Electrical Connections: Best to Worst
     Optimize Use of Flex Layers
     Voltage Standardization
     DFM for Printed Circuit Boards
Importance of Thorough Up-Front Work
     Thorough Up-Front Work at Toyota
     Thorough Up-Front Work at Motorola
     Thorough Up-Front Work at IDEO
     Avoid Compromising Up-Front Work
          Slow Processes for Sales and Contracts
          Rushing NPD for Long-Lead-Time Parts
          Rushing NPD for Early Evaluation Units
     Early Evaluation Units
Optimizing Architecture and System Design
     Generic Product Definition
     Team Composition and Availability
     Product Development Approach
     Lessons Learned
          Categories of Lessons Learned
          Methodologies for Lessons Learned
     Raising and Resolving Issues Early
          Project Issues
          Team Issues
          Mitigating Risk
          New Technologies
          Techniques to Resolve Issues Early
          Contingency Plans
          Achieving Concurrence before Proceeding 
     Manual Tasks
     Skill and Judgment
     Technical or Functional Challenges
     Manufacturable Science
     Concept/Architecture Design Optimization
     Optimizing the Use of CAD in the Concept/Architecture Phase 
     Concept Simplification
     Manufacturing and Supply Chain Strategies
Part Design Strategies
Design for Everything (DFX)
     Quality and Reliability
     Ease of Assembly
     Ability to Test
     Ease of Service and Repair
     Supply Chain Management
     Shipping and Distribution
     Human Factors
     Appearance and Style
     Customers’ Needs
     Breadth of Product Line
     Product Customization
     Expansion and Upgrading
     Future Designs
     Environmental Considerations
          Product Pollution
          Processing Pollution
          Ease of Recycling Products
Creative Product Development
     Generating Creative Ideas
     Generating Ideas at Leading Companies
     Encouraging innovation at Medtronic
     Nine Keys to Creativity
     Creativity in a Team
     The Ups and Downs of Creativity
Half-Cost Product Development
     Prerequisites for Half-Cost Development
          Total Cost
     Designing Half-Cost Products


Designing for Lean and Build-to-Order
Lean Production
     Flow Manufacturing
     Supply Chain Simplification
     Kanban Automatic Part Resupply
Mass Customization
Developing Products for Lean, Build-to-Order, and Mass Customization
Portfolio Planning for Lean, Build-to- Order, and Mass Customization
Designing Products for Lean, Build-to-Order, and Mass Customization
     Designing around Standard Parts
     Designing to Reduce Raw Material Variety
     Designing around Readily Available Parts and Materials
     Designing for No Setup
     Parametric CAD.
     Designing for CNC
     Grouping Parts
     Understanding CNC
     Eliminating CNC setup
     Developing Synergistic Families of Products
     Strategy for Designing Product Families
      Designing Products in Synergistic Product Families
Modular Design
     Pros and Cons of Modular Design
     Modular Design Principles
Offshoring and Manufacturability
     Offshoring’s Effect on Product Development
     Offshoring’s Effect on Lean Production and Quality
     Offshoring Decisions
     Bottom Line on Offshoring
The Value of Lean, Build-to-Order, and Mass Customization
     Cost Advantages of BTO&MC
     Responsive Advantages of BTO&MC
     Customer Satisfaction from BTO&MC
     Competitive Advantages of BTO&MC
     Bottom Line Advantages of BTO&MC

Part Proliferation
The Cost of Part Proliferation
Why Part Proliferation Happens
Results of Part Proliferation
Part Standardization Strategy
     New Products
     Existing Products
Early Standardization Steps
     List Existing Parts
     Clean Up Database Nomenclature
     Eliminate Approved but Unused Parts
     Eliminate Parts Not Used Recently
     Eliminate Duplicate Parts
     Prioritize Opportunities
Zero-Based Approach
Standard Part List Generation
Part Standardization Results
Raw Materials Standardization
Standardization of Expensive Parts
Consolidation of Inflexible Parts
     Custom Silicon Consolidation
     VLSI/ASIC Consolidation
     Consolidated Power Supply at Hewlett-Packard
Tool Standardization
Feature Standardization
Process Standardization
Encouraging Standardization
Reusing Designs, Parts, and Modules
     Obstacles to Reusable Engineering
     Reuse Studies
Off-the-Shelf Parts
     Optimizing the Utilization of Off-the-Shelf Parts
     When to Use Off-the-Shelf Parts
     Finding Off-the-Shelf Parts
New Role of Procurement
     How to Search for Off-the-Shelf Parts
     Maximizing Availability and Minimizing Lead Times
Standardization Implementation


Minimizing Total Cost by Design
How Not to Lower Cost
     Why Cost Is Hard to Remove after Design
     Cost-Cutting Doesn’t Work
Cost Measurements
     Usual Definition of Cost    
     Selling Price Breakdown
     Selling Price Breakdown for an Outsourced Company 
     Overhead Cost Minimization Strategy
Strategy to Cut Total Cost in Half
Minimizing Cost through Design
Minimizing Overhead Costs
Minimizing Product Development Expenses
     Product Portfolio Planning
     Multifunctional Design Teams
     Methodical Product Definition
     Total Cost Decision Making
     Design Efficiency
     Off-the-Shelf Parts
     Product Life Extensions
     Debugging Costs
     Test Cost
     Product Development Expenses
     More Efficient Development Costs Less
     Product Development Risk
Cost Savings of Off-the-Shelf Parts
Minimizing Engineering Change Order Costs
Minimizing Cost of Quality
Rational Selection of Lowest Cost Supplier
Low Bidding
     Cost Reduction Illusion
     Cost of Bidding
     Pressuring Suppliers for Lower Cost
     The Value of Relationships for Cost Reduction
     Cheap Parts: Save Now, Pay Later
     Reduce Total Cost Instead of Focusing on Cheap Parts
     Value of High-Quality Parts
Maximizing Factory Efficiency
Lowering Overhead Costs with Flexibility
Minimizing Customization/Configuration Costs
Minimizing the Cost of Variety
     Work-in-Process Inventory
     Floor Space
     Internal Logistics
     Setup Costs
     Kitting Costs
Minimizing Materials Management Costs
Minimizing Marketing Costs
Minimizing Sales/Distribution Costs
Minimizing Supply Chain Costs
Minimizing Life Cycle Costs
     Reliability Costs
     Field Logistics Costs
Saving Cost with Build-to-Order
     Factory Finished Goods Inventory
     Dealer Finished Goods Inventory
     Supply Chain Inventory
     Interest Expense
     New Technology Introduction
     MRP Expenses
Effect of Counterproductive Cost Reduction

Total Cost
Value of Total Cost
     Value of Prioritization and Portfolio Planning
     Value of Product Development
     Value of Resource Availability and Efficiency
     Value of Knowing the Real Profitability
     Value of Quantifying All Overhead Costs
     Value of Supply Chain Management
Quantifying Overhead Costs
     Distortions in Product Costing
     Relevant Decision Making
     Cost Management
     Downward Spirals
Resistance to Total Cost Accounting
Total Cost Thinking
Implementing Total Cost Accounting
Cost Drivers
     Tektronix Portable Instruments Division
     HP Roseville Network Division (RND)
     HP Boise Surface Mount Center
Tracking Product Development Expenses
"abc": The Low-Hanging-Fruit Approach
     Implementing "abc"
Implementation Efforts
Typical Results of Total Cost Implementations


DFM Guidelines For Product Design
Design for Assembly
     Combining Parts
Assembly Design Guidelines
Fastening Guidelines
Assembly Motion Guidelines
Test Strategy and Guidelines
Testing in Quality versus Building in Quality
     Testing in Quality with Diagnostic Tests
     Building in Quality to Eliminate Diagnostic Tests
Design for Repair and Maintenance
Repair Design Guidelines
Design for Service and Repair
Maintenance Measurements
     Mean Time to Repair
Designing for Maintenance Guidelines

DFM Guidelines for Part Design
Part Design Guidelines
DFM for Fabricated Parts
DFM for Castings and Molded Parts
     DFM Strategies for Castings
     DFM Strategies for Plastics
DFM for Sheet Metal
DFM for Welding
     Understanding Limitations and Complications
     Optimize Weldment Strategy for Manufacturability
     Adhere to Design Guidelines
     Work with Vendors/Partners
     Print 3D Models
     Learn How to Weld
     Minimize Skill Demands
     Thoroughly Explore Non-Welding Alternatives
DFM for Large Parts
     The Main Problem with Large Parts
     Other Costs
     Residual Stresses
     Loss of Strength


Design for Quality
Quality Design Guidelines
     Excessively Tight Tolerances
     Worst-Case Tolerancing
      Tolerance Strategy
     Block Tolerances
     Taguchi Method™ for Robust Design
Cumulative Effects on Product Quality
     Effect of Part Count and Quality on Product Quality
     Predictive Quality Model
     Quality Strategies for Products
Reliability Design Guidelines
Measurement of Reliability
Reliability Phases
     Infant Mortality Phase
     Wearout Phase
Poka-Yoke Principles
     How to Ensure Poka-Yoke by Design
     Solutions to Error Prevention after Design
Strategy to Design in Quality
Customer Satisfaction


Implementing DFM
     Change at Leading Companies
Preliminary Investigations
     Conduct Surveys
     Estimate Improvements from DFM
     Get Management Buy-In
DFM Training
     Need for DFM Training
     Don’t Do DFM Training "On the Cheap"
     Customize Training to Products
      Trainer Qualifications
     DFM Training Agenda
     "What Happens Next?"
     Training Attendance
DFM Task Force
Stop Counterproductive Policies
Company Implementation
     Optimize NPD Teams
     Optimize NPD Infrastructure
     Incorporating DFM into the NPD Process
Team Implementation
     Importance for Challenging Projects
     Ensuring Success for the First Team Concurrent Engineering Project
Individual Implementation
DFM for Students and Job Seekers
Key DFM Tasks, Results, and Tools


Appendix A: Product Line Rationalization
Pareto’s Law for Product Lines
How Rationalization Can Triple Profits!
Cost Savings from Rationalization
Shifting Focus to the Most Profitable Products
Rationalization Strategies
The Rationalization Procedure
Total Cost Implications
Overcoming Inhibitions, Fears, and Resistance
Implementation and Corporate Strategy
How Rationalization Improves Quality
Value of Rationalization

Appendix B: Summary of Guidelines
Assembly Guidelines from Chapter 8
Fastening Guidelines from Chapter 8
Assembly Motion Guidelines from Chapter 8
Test Guidelines from Chapter 8
Repair Guidelines from Chapter 8
Maintenance Guidelines from Chapter 8
Part Design Guidelines from Chapter 9
DFM for Fabricated Parts from Chapter 9
DFM Strategies for Castings from Chapter 9
DFM Strategies for Plastics from Chapter 9
DFM for Sheet Metal from Chapter 9
Quality Guidelines from Chapter 10
Reliability Guidelines from Chapter 10

Appendix C: Feedback Forms

Appendix D: Resources
Books Cited
Companion Book for Matching Improvements in Operations
DFM Seminar
Seminar on BTO & Mass Customization
Workshops Facilitated by Dr. Anderson
Design Studies and Consulting

View More



Dr. David M. Anderson, P.E., is the world’s leading expert on using concurrent engineering to design products for manufacturability. Over the past 27 years presenting customized in-house DFM seminars, he has honed these methodologies into an effective way to accelerate the real time-to-stable-production and significantly reduce total cost.

His book-length website,, presents a comprehensive cost reduction strategy consisting of eight strategies. DFM is a key half-cost strategy because it supports most of the others. Dr. Anderson shows clients how to apply these strategies for cost reduction, ranging from half cost to an order of magnitude, which he teaches in customized in-house seminars, workshops, and design studies to generate innovative breakthrough concepts.

In the management of technology program at the University of California at Berkeley, he wrote and taught the product development course twice. He wrote the opening chapter in the sixth volume of the SME Tool and Manufacturing Engineers Handbook. His second book on mass customization, Build-to-Order & Mass Customization: The Ultimate Supply Chain Management and Lean Manufacturing Strategy for Low-Cost On-Demand Production Without Forecasts or Inventory, is described in Appendix D.

Dr. Anderson has more than 35 years of industrial experience in design and manufacturing. For seven years, his company, Anderson Automation, Inc., built special production equipment and tooling for IBM and OCLI and did design studies for FMC, Clorox Manufacturing, and SRI International. As the ultimate concurrent engineering experience, he personally built the equipment he designed in his own machine shop. He has been issued four patents and is working on more.

Dr. Anderson is a fellow of ASME (American Society of Mechanical Engineers) and a life member in SME (Society of Manufacturing Engineers). He is a certified management consultant (CMC) through the Institute of Management Consultants. His credentials include professional registrations in mechanical, industrial, and manufacturing engineering and a doctorate in mechanical engineering from the University of California, Berkeley, with a major in design for production and minors in industrial engineering, metalworking, and business administration.

Dr. Anderson can be reached via email: [email protected] His websites are and