Deterioration and Optimal Rehabilitation Modelling for Urban Water Distribution Systems: 1st Edition (Paperback) book cover

Deterioration and Optimal Rehabilitation Modelling for Urban Water Distribution Systems

1st Edition

By Yi Zhou

CRC Press

236 pages

Purchasing Options:$ = USD
Paperback: 9781138322813
pub: 2018-06-13
SAVE ~$17.99
eBook (VitalSource) : 9780429451799
pub: 2018-05-03
from $44.98

FREE Standard Shipping!


Pipe failures in water distribution systems can have a serious impact and hence it’s important to maintain the condition and integrity of the distribution system. This book presents a whole-life cost optimisation model for the rehabilitation of water distribution systems. It combines a pipe breakage number prediction model with a pipe criticality assessment model, which enables the creation of a well-constructed and more tightly constrained optimisation model. The pipe breakage number prediction model combines information on the physical characteristics of the pipes with historical information on breakage and failure rates. A weighted multiple nonlinear regression analysis is applied to describe the condition of different pipe groups. The criticality assessment model combines a pipe’s condition with its hydraulic significance through a modified TOPSIS. This model enables the optimisation to focus its efforts on those important pipes. The whole life cost optimal rehabilitation model is a multiple-objective and multiple-stage model, which provides a suite of rehabilitation decisions that minimise the whole life cost while maximising its long-term performance. The optimisation model is solved using a modified NSGA-II. The utility of the developed models is that it allows decision makers to prioritize their rehabilitation strategy in a proactive and cost-effective manner.

Table of Contents

1 Introduction

1.1 Background

1.2 Pipe Deterioration, Failure and Rehabilitation

1.3 Research Contents and Technical Roadmap

2 Water Distribution System Rehabilitation Strategy and Model

2.1 Introduction

2.2 Pipe Deterioration Models

2.3 Pipe Criticality Assessment Model

2.4 Water Main Optimal Rehabilitation Decision Model

2.5 Summary

3 Pipe Breakage Number Prediction Model

3.1 Introduction

3.2 Pipe Deterioration Influence Factor

3.3 Methodologies

3.4 Modelling

3.5 Summary

4 Pipe Criticality Assessment Model

4.1 Introduction

4.2 Indicators Concerning Criticality

4.3 Methodology for Pipe Criticality Assessment

4.4 Disadvantage and Modification of TOPSIS

4.5 Summary

5 Optimal Rehabilitation Decision Model

5.1 Introduction

5.2 General Optimization Design and Rehabilitation Model Review

5.3 Multiple Motivations of WDS Rehabilitation

5.4 Elements of Modelling

5.5 Objectives and Constraints in Different Stages

5.6 Optimization Algorithm for Present Stage Decision

5.7 Optimization Algorithm for Future Stages Decision

5.8 Discussion

5.9 Summary

6 Case Study

6.1 Introduction

6.2 Case Study of Pipe Breakage Number Prediction Model

6.3 Case Study of Pipe Criticality Assessment Model

6.4 Case Study of Water Main Optimal Rehabilitation Decision Model

6.5 Summary

7 Summary, Conclusions and Recommendations

7.1 Introduction

7.2 Pipe Breakage Number Prediction Model

7.3 Pipe Criticality Assessment Model

7.4 Water Main Optimal Rehabilitation Decision Model

7.5 Recommendation of Future Work


About the Author

Yi Zhou is a member of the faculty in Wuhan University, China. His main interests are water distribution systems, urban sewerage, drainage and flood control systems.

About the Series

IHE Delft PhD Thesis Series

IHE Delft PhD programme leads to a deepening of a field of specialisation. PhD fellows do scientific research, often with conclusions that directly influence their region. At IHE Delft, PhD researchers from around the world participate in problem-focused and solution-oriented research on development issues, resulting in an inspiring research environment. PhD fellows work together with other researchers from many countries dealing with topics related to water and the environment.

PhD research is often carried out in the ‘sandwich’ model. Preparation and final reporting – the first and last portion of the programme – are carried out in Delft, while actual research is done in the fellow’s home country, under co-supervision of a local institute. Regular contacts with the promotor are maintained through visits and long-distance communication. This enables researchers to employ solutions directly to problems in their geographical region.

IHE Delft PhD degrees are awarded jointly with a university. The degrees are highly valued and fully recognised in all parts of the world.

Learn more…

Subject Categories

BISAC Subject Codes/Headings:
SCIENCE / Environmental Science
TECHNOLOGY & ENGINEERING / Environmental / Water Supply