Differential Geometry with Applications to Mechanics and Physics: 1st Edition (Hardback) book cover

Differential Geometry with Applications to Mechanics and Physics

1st Edition

By Yves Talpaert

CRC Press

480 pages

Purchasing Options:$ = USD
Hardback: 9780824703851
pub: 2000-09-12
SAVE ~$48.00
eBook (VitalSource) : 9780429179990
pub: 2000-09-12
from $160.00

FREE Standard Shipping!


An introduction to differential geometry with applications to mechanics and physics. It covers topology and differential calculus in banach spaces; differentiable manifold and mapping submanifolds; tangent vector space; tangent bundle, vector field on manifold, Lie algebra structure, and one-parameter group of diffeomorphisms; exterior differential forms; Lie derivative and Lie algebra; n-form integration on n-manifold; Riemann geometry; and more. It includes 133 solved exercises.


"The book is written in a very understandable and systematic way, with a lot of figures. A very good feature of the book is a collection of more than 130 exercises and problems … . The book can be recommended for a wide range of students as a first book to read on the subject. It can be also useful for the preparation of courses on the topic."

- EMS Newsletter

". . .a self-contained introduction to differential geometry. . ..very succinct."

---Monatshefte für Mathematik

Table of Contents

Part 1 Topology and differential calculus requirements: topology; differential calculus in Banach spaces; exercises. Part 2 Manifolds: introduction; differential manifolds; differential mappings; submanifolds; exercises. Part 3 Tangent vector space: tangent vector; tangent space; differential at a point; exercises. Part 4 Tangent bundle-vector field-one-parameter group lie algebra: introduction; tangent bundle; vector field on manifold; lie algebra structure; one-parameter group of diffeomorphisms; exercises. Part 5 Cotangent bundle-vector bundle of tensors: cotangent bundle and covector field; tensor algebra; exercises. Part 6 Exterior differential forms: exterior form at a point; differential forms on a manifold; pull-back of a differential form; exterior differentiation; orientable manifolds; exercises. Part 7 Lie derivative-lie group: lie derivative; inner product and lie derivative; Frobenius theorem; exterior differential systems; invariance of tensor fields; lie group and algebra; exercises. Part 8 Integration of forms: n-form integration on n-manifold; integral over a chain; Stokes' theorem; an introduction to cohomology theory; integral invariants; exercises. Part 9 Riemann geometry: Riemannian manifolds.

About the Series

Chapman & Hall/CRC Pure and Applied Mathematics

Learn more…

Subject Categories

BISAC Subject Codes/Headings:
MATHEMATICS / Functional Analysis