Discrete Encounters  book cover
SAVE
$29.99
1st Edition

Discrete Encounters



  • Available for pre-order. Item will ship after April 23, 2020
ISBN 9781498735865
April 23, 2020 Forthcoming by Chapman and Hall/CRC
720 Pages - 148 Color & 270 B/W Illustrations

 
SAVE ~ $29.99
was $149.95
USD $119.96

Prices & shipping based on shipping country


Book Description

Eschewing the standard dry and static writing style of traditional textbooks, Discrete Explorations provides a refreshing approach to discrete mathematics. The author combines traditional course topics with popular culture, applications, and various historical examples. This book focuses on the historical development of the subject and provides details on the people behind mathematics and their motivations, which will deepen readers’ appreciation of mathematics.

With its unique style, the book covers many of the same topics found in other texts but done in an alternative, entertaining style that better captures readers’ attention. Defining discrete mathematics, the author also covers many different topics. These include combinatorics, fractals, permutations, difference equations, graph theory, trees and financial mathematics. Not only will readers gain a greater impression of mathematics, but they’ll be encouraged to further explore the subject.

 

Highlights:

  • Features fascinating historical references to motivate readers
  • Text includes numerous pop culture references throughout to provide a more engaging reading experience
  • Its unique topic structure presents a fresh approach
  • The text’s narrative style reads more like a popular book instead of a dry textbook
  • Covers many topics from combinatorics, as well as discrete mathematics

Table of Contents

Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

0. Continuous vs. Discrete. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

1. Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

2. Proof Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

3. Practice with Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85

4. Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

5. Venn Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135

6. The Functional View of Mathematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159

7. The Multiplication Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177

8. Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197

9. Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219

10. Pascal and the Arithmetic Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243

11. Stirling and Bell Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277

12. The Basics of Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301

13. The Fibonacci Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327

14. The Tower of Hanoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357

15. Population Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .385

16. Financial Mathematics (and More) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .405

17. More Difference Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .427

18. Chaos Theory and Fractals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .453

19. Cellular Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .515

20. Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .571

21. Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .641

22. Relations, Partial Orderings, and Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .663

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .691

...
View More

Author(s)

Biography

Craig P. Bauer is a professor of mathematics at York College of Pennsylvania. He’s the

editor-in-chief of Cryptologia and was the 2011–2012 Scholar-in-Residence at the National

Security Agency’s Center for Cryptologic History. He loves to carry out research, write,

and lecture. His previous books are Secret History: The Story of Cryptology and Unsolved!

The History and Mystery of the Worlds Greatest Ciphers from Ancient Egypt to Online Secret

Societies. With the present book he stays true to his style, blending mathematics and

history. Craig earned his Ph.D. in mathematics from North Carolina State University

and did his undergraduate work at Franklin & Marshall College.